The cosmic evolution of metallicity and abundance gradients

open problems

100% talk BPT-free talk F. Mannucci G. Cresci, R. Maiolino, A. Marconi, M. Curti, M. Perna, G. Venturi, S. Carniani, F. Belfiore, et al.

A new landscape

- Number of high-redshift galaxies with good rest-frame optical spectroscopic data is rapidly increasing:
 - Keck/MOSFIRE
 - Subaru/FMOS
 - LBT/LUCI

- A significant number of galaxies have spatially resolved spectroscopy:
 - VLT/KMOS
 - VLT/SINFONI
 - Keck/OSIRIS

New models

analytic equilibrium models

 $Z_{\rm eq}(M_{\star}, \, {\rm SFR}) = Z_0$

+
$$\frac{y}{1 + \lambda(1 - R)^{-1} + \varepsilon^{-1} \left\{ (1 + \beta - b) \operatorname{SFR}/M_{\star} - (1 - R)^{-1} \frac{1.2}{t} \right\}}$$
,

 Z_{eq} = equilibrium metallicity = metallicity of the incoming gas, Z0 = chemical yield, У λ = outflow rate/SFR $= \lambda_0 \cdot m^a$ R = fraction of mass returned = star formation efficiency = SFR/M = $\epsilon_0 \cdot m^b$ 3 = slope of the MSSF, SFR ~ M^{1+b} β = age of the universe t

Dalcanton+04, Keres+05, Dekel+09, Brooks+07; Finlator+08, Davé+11, Campisi+11, Peeple+11, Krumholz+11, Fu+13, Dayal+13, Romeo-Velona+13,, Lilly+13, Forbes+14, Peng+14,15, Pipino+14, Obreja+14, Muñoz & Peeples 14, Lu+14, Creasy+15, Mitra+15, 17, Lu+15, Kacprzak+16, Davé+17

F. Mannucci

New models

semi-analytic models and numerical hydrodynamic simulations

- balance between cosmological accretion, outflows, star formation, recycling and feedback
- stellar-driven winds at low masses, AGN feedback at high masses
- mass-metallicity due to outflow rate
- FMR related to stochastic variations in the inflow rate
- scatter set by the timescale to re-equilibrate
- slow evolution of the FMR with redshift

Somerville & Davé 2015

Dalcanton+04, Keres+05, Dekel+09, Brooks+07; Finlator+08, Davé+11, Campisi+11, Peeple+11, Krumholz+11, Fu+13, Dayal+13, Romeo-Velona+13,, Lilly+13, Forbes+14, Peng+14,15, Pipino+14, Obreja+14, Muñoz & Peeples 14, Lu+14, Creasy+15, Mitra+15, 17, Lu+15, Kacprzak+16, Davé+17

F. Mannucci

Strangulation model

Testing the models at high z

What is needed for emission-line galaxies:

1 - More accurate ways to estimate metallicity 2- Spatial distribution of metallicity

3 - Large samples to assess the role of environments

Accurate measurement of metallicity

Three methods

1. CEL \rightarrow Te

[OIII] 4363/5007 [NII] 5755/6548 [SII] 6312/9532

- homogeneous regions (Te, ne, X)
- *Hβ* and *CEL* from the same region
- LTE
- simple geometry

CII4050 CII4267

- most reliable?
- very faint lines
- different abundances from different lines
- inconsistencies

3. photo-models

- ionizing continuum
- ionization parameter
- gas density
- geometry
- abundance ratios
- dust distribution

strong line method

F. Mannucci

Strong line method

Based on the previous ones

- measure metallicity with one of the previous methods
- compare metallicity with line flux ratios
- calibrate the relations
- 1. Empirical (Te)

Pilyugin 00,01, 03, Denicolò+02, Pilyugin & Thuan 05, Pe´rez-Montero & D´ıaz 2005, Stasinska 06; Yin+07; Peimbert+07, Pilyugin+10, 12; Marino+13;, Bianco+15, Brown+16, Curti+17

2. Theoretical (photoin. models)

McGaugh 91; Zaritsky+94; Dopita+00; Charlot & Longhetti 01; Kewley & Dopita 02, Kobulnicky & Kweley 04, Tremonti+04, Dopita+13,16, Perez-Montero+14

3. Semi-empirical

Alloin+79; Pagel +79; Edmunds & Pagel 84; McCall+85; Dopita & Evans 86; Skillman 89, Pettini & Pagel 04, Nagao+06, Maiolino+08,

Systematic differences

Poorly understood systematic differences

1.Theoretical: highest, 0.4-0.6 dex above Te

oversimplified assumptions: geometry? N/O?

2.Te lowest:

temperature gradients?

3.Recombinational lines: intermediate (lines too faint cannot be used)

Peimbert+67, Stasinska+02,05, Kennicutt +03; Garnett+04; Bresolin+04, 05; Shi+06; Nagao+06; Liang+06; Yin+07; Kewley & Ellison 08, Moustakes+10 Emission line galaxies with MOS - Cambridge Sept 2017

Empirical (CEL, Te) better than Theoretical

- 1. Better agreement with solar value
- 2. Better agreement with stellar metallicities

Possible biases:

 fluctuations of temperature, density, abundances

Peimbert 1967; Kobulnicky+99, Stasinska 05; Bresolin 06

• NLTE effects

Garcia-Rojas & Esteban 06, 07, Nicholls+12; Dopita+13, Blanc+15

Bresolin+09, Simon-Diaz+10,11, Gazak+15, Toribio San Cipriano+15, Davies+16

F. Mannucci

Strong-line calibration based on Te

- Robust calibration based on:
 - galaxies (instead of HII regions)
 - many galaxies
 - metallicities from a direct Te method
 - wide range of metallicities
 - not based on N/O


```
Curti+17
```

 Stacking analysis of ~120.000 SDSS spectra to detect Tesensitive lines

region	species	line ratio	Temp.
	0+	[OII] 3727, 3729/[OII] 7320, 7330	T2[OII]
low ionization	N+	[NII] 6584/[NII] 5755	T2[NII]
	S+	[SII] 6717,6731/[SII] 4069	T2[SII]
high ionization	O++	O[III] 5007/[OIII] 4363	T3[OIII]

F. Mannucci

Stacking procedure

Earlier attempts:

- Liang+07: MZR \rightarrow stacking in mass
- Brown+16: FMR \rightarrow stacking in mass and SFR

Different approach: similar properties vs similar spectra

• Bins of $[OII]/H\beta$ and $[OIII/H\beta]$

Stacking procedure

Assumption: a pair of $[OII]/H\beta$ and $[OIII]/H\beta$ corresponds to a value of $12 + \log(O/H)$

- strong-line method can be used
- $[OII]/H\beta$ and $[OIII]/H\beta \propto$ main ionization states of O
- [OIII]/[OII] sensitive to ionization parameter
- The flux of the auroral lines can be predicted from the strong lines \rightarrow Te([OII], [OIII])
- not assuming any particular combination (e.g. R23)
- no assumptions on [N/O]

F. Mannucci

The calibrations

- main strong lines
- stacks and single galaxies (SDSS galaxies with SNR(4363)>10
- distribution on R2 and R3 due to binning

Diagnostic	σ	Range
R_2	0.26	$7.6 < 12 + \log(O/H) < 8.3$
R_3	0.07	$8.3 < 12 + \log(O/H) < 8.85$
O_{32}	0.14	$7.6 < 12 + \log(O/H) < 8.85$
R_{23}	0.12	$8.4 < 12 + \log(O/H) < 8.85$
N_2	0.10	$7.6 < 12 + \log(O/H) < 8.85$
O_3N_2	0.09	$7.6 < 12 + \log(O/H) < 8.85$

F. Mannucci

Emission line galaxies with N

Mass-metallicity

The calibrations

self-consistency

dispersion

- metallicity does not depend on the line ratio used.
- incomplete spectra give the same metallicity

Often dominates the uncertainties: don't believe to $\Delta met=0.1$!!

FMR

prediction of Z=Z(mass, SFR) based only on data at z=0

1- expected Z for a given mass and SFR

easier to test, average among many galaxies, does not depend on dynamic range of SFR

2- dependence of Z on SFR for galaxies of a given mass more difficult, further subdivision of galaxies in bin, dynamic range of SFR, accuracy of determination of SFR

F. Mannucci

FMR at high redshift

FMR and MZR

There is no "absolute" mass-metallicity relation at any redshift depends on SFR as expected from the FMR

Local galaxies:

- most show negative gradients (Zaritsky+94, van Zee+98, Manciel+03, Magrin+06, Moustakas+10, Ho+15, Davies+16)
- CALIFA & MANGA (Sánchez+14; Pérez-Montero+16; Belfiore+17)
- mergers show flat gradients, → interaction-induced inflow of metal-poor gas (Kewley+06,10; Michel-Dansac+08, Rupke+10, Perez+11, Sánchez+14).

Models: different prescription for:

- gas infall
- radial transfers
- feedback and outflows
- efficiency of star formation
- galactic fountains
- major/minor merging.

Mollà+97, Chiappini+01, Magrini+07, Fu+09, Crain+09, Di Matteo+09, Rupke+10, Spitoni+11, Kobayashi+11; Rahimi+11,
 Few+12; Pilkington+12; McCarthy+12, Mott+13, Gibson+13; Anglés-Alcázar+14, Tissera+16,17, Ma+17, Taylor+17, Schönrich+17
 F. Mannucci
 Emission line galaxies with MOS - Cambridge Sept 2017

Evolutionary scenarios and correlations.

- Smooth, secular inside-out evolution \rightarrow steeper gradients at high-z
- Strong feedback and outflows \rightarrow flatten gradients (Pilkington+12; Gibson+13; Anglés-Alcázar+14)
- Rapid radial gas inflows -> flatten or even invert gradients (Tosi+88, Chiappini+01, Mott+13)
- Merging → flattens the gradients, but merger-induced instabilities can create negative gradients (Sillero+17)

•AGN feedback prevents the building up of gradients flattened by mergers (Taylor+17)

Molla+97, Chiappini+01, Magrini+07, Fu+09, Crain+09, Di Matteo+09, Rupke+10, Spitoni+11, Kobayashi+11; Rahimi+11, Few+12; Pilkington+12; McCarthy+12, Mott+13, Gibson+13; Anglés-Alcázar+14, Tissera+16,17, Ma+17, Taylor+17, Schönrich+17 F. Mannucci Emission line galaxies with MOS - Cambridge Sept 2017 22

Large dispersions expected

Many effect and different timescales \rightarrow large scatter

Effect of evolution, merging, feedback

Observations at high redshifts: large uncertainties:

- different calibrations
- few (one) line ratios
- low SNR (resolving faint lines)
- limited spatial resolution (best with AO and lensing)
- AGN
- azimuthal averages

Williams+14

Multi-parametric approach: Gradients as a function of galaxy properties: mass, SFR, position of the MS, gas fraction, metallicity size, dynamics, dynamical mass, presence of outflows (broad wings), velocity dispersion

> Cresci+10, Yuan+11, Queyrel+11, Swinbank+12, Jones+10,13,15,, Troncoso+14, Williams+14, Stot+14, Leethochawalit+15, Wuyts+16

- Large dispersions
- Only weak dependences
- differences among the different works:

Paper	Stott +14	Queyrel +12	Wuyts +16	Williams +14	Leethoch awalit+15	Troncoso +14
redshift	~1	~1.2	0.9 & 2.3	~1.5	~2	~3.3
mass	NO	-	🥆 2.8σ	-	_	NO
sSFR	∕ 2.9σ	-	∕ 2.5σ	-	NO	NO
metallicity	NO	N	NO	-	N	-
V/σ	-	N	NO	NO	NO	7
size	-	-	NO	-	-	-
posit. grad.	few	many	a few	no	several	many

Cresci+10, Yuan+11, Queyrel+11, Swinbank+12, Jones+10,13,15,, Troncoso+14, Williams+14, Stot+14, Leethochawalit+15, Wuyts+16

Lensed galaxies with ARGOS

Ground Layer Adaptive Optics @ LBT

"seeing enhancer" (PSF~0.3") over a large FoV (~4'x4')


```
Perna+ in prep.
```

low SFR : 10 - 80 M_☉/yr

low masses, log(M*) = 9.1 - 10.3

resolution ~ 200pc

lensed galaxies with ARGOS

F.

Perna+ in prep.

bridge Sept 2017

lensed galaxies with ARGOS

• evidence for outflows

Perna+ in prep.

• flat metallicity gradients both within and between the clumps

Environment

One of the fundamental parameters. Effects:

- remove metal-poor gas from the outskirts
- effect on gas recycling
- merger rates
- timescales
- interactions central galaxy satellites

Limited effects on MZR and FMR (Mouhcine+07, Cooper+08, Ellison+09, Davé+11, Scudder+12, Pasquali+12, Magrini+12, Kulas+13, Hughes+13, Shimakawa+15, Kacprzak+15)

Valentino+15: lower metallicities $(0.25 \text{ dex}, 4\sigma)$ in a proto-cluster at z = 1.99.

Environment

 $z\sim0.9$: central galaxies have higher metallicities than satellites of 0.06 dex, low significance (<2 σ)

NIRSPEC/JWST and MOONS/VLT

1000 fibers, 500 sq.arcmin FoV λ: 0.64 -1.8 μm simultaneous wavelength range R=4000-6000

100.000 galaxies at 0.5<z<2.5

- \rightarrow [OII] H β [OIII] H α [NII] [SII]
- → [NeIII]3870 [SII]4069 [OIII]4363 [NII]5755 [OII]7320

R=100, 1000, 2700 λ: 0.6 - 5.3 μm

Conclusions

metallicity: entering the era of precise measurements and model testing

- 1. more accurate and predictive models
- 2. more accurate calibrations
- 3. more powerful multi-object instruments
- 4. more powerful multi-object IFUs (with and without AO)
- multi-parametric scaling relations
- distribution inside galaxies

JWST & MOONS will change the landscape

F. Mannucci

Internal consistency

 differences of the metallicity derived for single galaxies using various calibrations

Resulting spectra

Continuum subtraction: MIUSCAT Vazdekis+12, Ricciardelli+12, Falcón-Barroso+11, Cenarro+01, Vazdekis+10; Sánchez-Blázquez+06

Iron below Oxygen ?

- [OIII]4363 is contaminated in high-metallicity galaxies (12+log(O/H)≥8.3)
- [OIII]4363 flagged "unreliable" when f(FeII)>0.5 · f(OIII)

Problem in old measurements of Te?

Measuring temperature

 $T_2[NII] \sim T_2[OII]$

$T_2[SII] > T_2[OII]$

t2 - t3

• different relations between galaxies and HII region

Campbell+86, Garnett 92; Izotov+06; Pilyugin+06, 09, 10, Andrews&Martini13

F. Mannucci

t2 - t3

• Diffused gas?

Moustakas & Kennicutt 2006, Pilyugin+10

F. Mannucci

galaxies without lines: f-f relation observed relation between auroral and strong lines

1 - [OIII] $R = \frac{[OIII]4363}{H\beta}$ $P = \frac{[OIII]4959,5007}{[OIII]4959,5007 + [OII]3727}$ $R3 = \frac{[OIII]4959,5007}{H\beta}$

$\log R = -4.151 - 3.118 \log P + 2.958 \log R_3 - 0.680 (\log P)^2$

Pilyugin+05,06

F. Mannucci

galaxies without lines: f-f relation observed relation between auroral and strong lines

1 - [OIII]

 $\log R = -4.151 - 3.118 \log P + 2.958 \log R_3 - 0.680 (\log P)^2$

F. Mannucci

galaxies without lines: f-f relation observed relation between auroral and strong lines

2 - [OII]7320,7330

combination of [OII]/H β and [OIII/H β

F. Mannucci

galaxies without lines: f-f relation observed relation between auroral and strong lines

2 - [OII]7320,7330

 $\log R_{[OII]} = -1.913 + 0.806 \log R_2 + 0.374 \log R_3$

F. Mannucci

Deriving O/H

pyneb from: temperature, density, line flux ratios
 - O⁺ and O⁺⁺

Tests of the method

- 1. similar values of both R2 and R3 correspond to similar metallicities
- 2. stacking does not introduce undesirable effects

Single galaxies:

- from Pilyugin+10 with detected [OIII]4363 and [OII]7320,7330
- from SDSS7 with detected [OIII]4363 ([OII] from ff relation) Same procedure

Tests of the method

- 1. similar values of both R2 and R3 correspond to similar metallicities
- 2. stacking does not introduce undesirable effects

Single galaxies:

- from Pilyugin+10 with detected [OIII]4363 and [OII]7320,7330
- from SDSS7 with detected [OIII]4363 ([OII] from ff relation) Same procedure

Evolution of line ratios and BPT

evolution of BPT diagram at z>0.8 as a function of mass and SFR

Observational status of FMR

• Numerous confirmations (predictions!) at all redshifts

- wide range of selections, properties, and redshifts
- cautions when selecting in metallicity (OIII4363, OIII5007)

Richard+10, Nakajina+11, Erb+10, Contini+11, Sanders+11, Dessauges+11, Cresci+12, Wuyts+12, Roseboom+12, Cullen+13, Pilyugin+13, Ly+13, Belli+13, Henry+13a,13b, Yabe+13, Maier+14, Stott+14, Lian+15

F. Mannucci

Redshift evolution of the FMR

Steidel et al. 2014: 179 galaxies at $z\sim 2.3$ with MOSFIRE:

We find that the dependence of inferred gas-phase metallicity on SFR at a given M* is much weaker at high redshift than at $z \sim 0$, indicating that $z \sim 2.3$ galaxies do not adhere to the same "fundamental metallicity relation" as star-forming galaxies at low redshift.

Wuyts et al. 2014: 222 z~2.2 with SINFONI/ KMOS:

"our data do not show a correlation between the [N II]/Ha ratio and SFR, which disagrees with the 0.2-0.3 dex offset in [N II]/Ha predicted by the "fundamental relation" between stellar mass, SFR and metallicity discussed in recent literature"

Redshift evolution of the FMR

scatter can be reduced by considering SFR only if the intrinsic scatter is smaller than the dependence on SFR

- 1. quality of data:
 - metallicity
 - SFR
 - mass
- 2. range in SFR (usually narrow)
- 3. mass range
- 4. larger intrinsic scatter at high redshifts

FMR: prediction of the median value of metallicity from local galaxies

mass-metallicity relations: different parts of the same FMR

FMR and apertures

FMR: due to aperture because of gradients?

SDSS spectra: 3" fiber metallicity gradients and dimensions correlated to SFR?

- 1. min dist = 300Mpc, aperture=4kpc (median 6kpc)
- 2. no dependence on distance
- 3. no dependence on light fraction

Sanchez et al 2012" *The Mass-Metallicity relation explored with CALIFA: Is there a dependence on the star formation rate?*" "..we do not find any secondary relation with the star-formation rate.."

Observational status of FMR

- 1. dependence on Ha
- 2. Lilly et al 2013
- 3. "The use of the Ha line in both metallicity and SFR measurements may introduce coupling of errors"

Calibrations and evolutions

shape depends on metallicity calibrat

8.4

12+log(0/H) [direct] a iv

7.8

8.4

7.8

- different conditions at high redshift
- evolution in the BTP diagram

8.4

12+log(0/H) [direct] &
v

7.8

7.8

Extreme GPs

Normal GPs Q2343-BX418

Q2343-BX660

 $\Delta \log(0/H) = 0.04 \pm 0.14$

8.2

Q0207-BX74

8

12+log(0/H) [N2]

CSWR 20

significant spread when using Te

8

12+log(0/H) [R23]

8.2

Extreme GPs

Normal GPs

Q2343-BX418

Q2343-BX660

Q0207-BX74

CSWR 20

Calibrations and evolutions

• systematic offset between NII/Ha and O3+O2

Calibrations and evolutions Oxygen better than Nitrogen?

Calibrations and evolutions Oxygen better than Nitrogen?

SDSS galaxies with [OIII]4363 detection, binned in OIII/OII (i.e. ionization parameter): no clear trend with ionization parameter, and no differences with Te and N2 metallicity

conferme FMR

• Lian et al 2015: 703 LBG-analogs, selected in Ha luminosity and surface brightness, 8.5<log(M)<11, 0.05<z<0.30, D(4000)<1.1

Yabe+13

- Yabe et al. (2013) 340 K-band selected star forming galaxyes, FMOS/Subaru, 1.2<z<1.6, N2, stacking analysis
- low depndence on SFR, but only ~0.1dex expected!
- FMR works to reproduce average metallicity
- "found that the metallicity of galaxies at high redshift correlates with the rest-frame NUV—optical colour at a fixed mass.

58

Wuyts genzel +14

- 222 galaxies, 0.8<z<2.6, 9<M<11.5, LUCI+SINFONI+KMOS
- KMOS: K<23, mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M*) and rest-frame (U V) M* planes uniformly.
- SFR from UV+IR
- steep slope of the MZR

Steidel 14

- 179 galaxies at 2.0<z<2.6, 5 < SFR < 150 M/yr8.8 < log(M)< 11.5.
- extinction from continuum fit
- models: correlation between Gamma and metallicity

Steidel 14

• shallow MZR,

Steidel 14

- shallow MZR,
- error in computing the FMR

salim 14

- dependence of SFR with all the SFRs, no spurious dependence on Ha
- M10 results more robust that T04
- dependence on aperture even in Sanchez

Shapley 14

- 53 MOSDEF galaxies, MOSFIRE
- galaxies outdside the BPT only when N2 is used:

F. Mannucci

Emission line galaxies with MOS - Cambridge Sept 2017

newman 14

- 22 galaxies at $z \sim 1.5$, spatially resolved
- importance of shocks and faint AGNs
- O3N2 works better than N2, offset

Emission line galaxies with MOS - Cambridge Sept 2017