Improving the halo model using hydrodynamical simulations with an eye to cosmological emulators Alberto Acuto, LJMU

The Halo Model is a versatile, fast and accurate tool that allows us to explore several LSS observables.

oscode: fast solutions of oscillatory ODEs in cosmology

Fruzsina J. Agocs^{1,2}

¹Kavli Institute for Cosmology, Cambridge

²Astrophysics Group, Cavendish Laboratory, Cambridge

What?

- C++ package with C++ and Python interface
- Solves $\ddot{x}(t)+2\gamma(t)\dot{x}(t)+\omega^2(t)x(t)=0$
- ω and γ can be explicit functions of time or array-like containers, storing results of numerical calculations

Why?

- Generalised oscillators extremely common in physics:
- Schrödinger equation, propagation of waves in atmosphere, primordial perturbations, . . .
- Available numerical solvers inefficient at high frequencies, even if frequency varies slowly

How?

- Problem is poor representation of solution
- Use the Wentzel-Kramers-Brillouin approximation
- This allows skipping over highly oscillatory regions

CMB B-mode delensing for the next generation of experiments

Antón Baleato, IoA, Cambridge with A. Challinor, B. Sherwin, T. Namikawa, B. Yu

Dark Radiation from Torsion

Will Barker

wevbarker wb263@cam.ac.uk

harker w 1

A. N. Lasenby, W. J. Handley, M. P. Hobson & Y. C. Lin

Modified 'gauge theory' gravity

- Renormalisable (power-counting)
- Unitary
- Dynamical curvature + torsion
- Action is Einstein-Hilbert Yang-Mills
- Massless $J^P = 2^+$ gravitons tordions

Cosmological phenomenology

- Emergent Friedmann equations
- 'k-screening' (flatness problem?)
- Dark radiation (H_0/σ_8 -tensions?)
- ► Modern universe = attractor state
- Testable torsion ($\Delta N_{
 u, {
 m eff}}$, $Q_0 pprox M_{
 m P}$)

Poster: Habitable Tordion Worlds

Paper: Cosmologically valid gauge gravities: a systematic approach (in prep for Phys. Rev. D)

The Leek Elsewhere Effect

Adrian Bayer and Uroš Seljak – (Poster 5)

• Example:

• Exotic model of inflation

 $\circ P(k|\mathbf{z}) = P_{\Lambda \text{CDM}}(k) + \Delta P(k|\mathbf{z})$

 $\circ z$ relatively unconstrained by theory

- Try: Maximum likelihood estimation
- **Problem:** Look elsewhere effect large parameter space will give many spurious peaks.
- Solution: Maximise the posterior mass, not the likelihood.
- Potential uses in various areas including exoplanets and GWs.

Quantum Bias Cosmology

Luke Butcher, University of Edinburgh.

- No Dark Energy or Modified Gravity: Obtain cosmic acceleration "for free", by treating Universe as quantum system.
- Holographic Foundations: Testable application of central tenet of quantum gravity.
- **Exact Solutions**: Predicts $a(\tau)$ and $w_{\text{eff}}(z)$ from first principles.
- **Falsifiable**: One new free parameter γ ; cannot mimic Λ exactly.
- **Passes Preliminary Tests**: Achieves close agreement with Λ CDM at early times, with deviations O(1%) at present day.
- **Phantom**: Generates $w_{\text{eff}} < -1$ acceleration without issue.
- Fine Tuning: Inflation provides mechanism for $\Lambda_{obs} \sim 10^{-120} / \ell_{pl}^2$.
- **Future Work**: Compare with actual data! Explore H_0 tension.

Peaks, minima and baryons

Constraints on cosmological parameters from peak counts with and without accounting for baryonic effects

In collaboration with Jia Liu, Ian McCarthy and Ken Osato.

Measuring the Environment of Radio Loud Galaxies using CMB Lensing

from the latest Planck data release

Dr Carolyn Devereux

University of Hertfordshire Collaborators: Prof. James Geach, Prof. Martin Hardcastle

MOTIVATION: In what environments do the most powerful AGN reside?

Measure cross-power spectrum of RLAGN density fields with weak lensing maps of *Planck* CMB

Overlay of RLAGN & CMB lensing maps: correlation can be seen by eye

Funded by STFC

Cross-correlation power spectrum between RLAGN & CMB lensing

CONCLUSION: Confirms that RLAGN live in rich galaxy groups & clusters

PECULIAR VELOCITIES OF LENS GALAXIES FROM MICROLENSING

A. ESTEBAN GUTIÉRREZ

Inflation, curvature (tension) and kinetic dominance

Curvature tension

- ▶ Planck (plik) and CMB lensing are in 2.5 σ tension for $\Omega_{\kappa} \neq 0$.
- We should be suspicious of combining BAO, CMB lensing and Planck for curved universe fits.
- plik prefers closed universes with odds of 50:1.

Reconstructed power spectra

Will Handley <wh260@cam.ac.uk>

Lukas Hergt

Kavli Institut for Cosmology Cavendish Astrophysics University of Cambridge

lh561@mrao.cam.ac.uk

with Will Handley, Mike Hobson, Anthony Lasenby

"Case for kinetic dominance initial conditions for inflation", Phys. Rev. D 100, 023502 (2019), arXiv:1809.07185

"Constraining the kinetically dominated Universe", Phys. Rev. D 100, 023501 (2019), arXiv:1809.07737

with

A. Amara, R. Brandenberger, T. Kacprzak, A. Réfrégier "Searching for Cosmic Strings in CMB Anisotropy Maps using Wavelets and Curvelets", JCAP 06 (2017), arXiv:1608.00004

Kinetic initial conditions for inflation

- generically expected when integrating backwards in time
- cutoff and oscillations in the primordial power spectrum
 - ⇒ candidates for low- ℓ lack of power and/or ℓ =20-30 dip in CMB angular power spectrum
- Bayesian inference
 - Parameter estimation: MCMC (CosmoMC, MontePython, Cobaya)
 - Model Comparison: Nested Sampling (PolyChord)
- next: closed universes
 - ⇒ even *tiny* $\Omega_{k,0}$ has important consequences

Early Structure Formation in Λ PBH Cosmologies

Derek Inman, New York University

- PBHs cause small scale structure to be highly nonlinear at $z \sim 1000$
- Study with N-body simulations containing PBHs + "particle dark matter"
- May affect CMB, LIGO, cosmic dawn

Inman and Ali-Haïmoud (arXiv:1907.08129)

Cosmological Gravitational Wave Propagation through the Clumpy Universe

Marios Kalomenopoulos, University of Edinburgh, mariok@roe.ac.uk

Main Goal: Investigate the effects of matter anisotropies in the universe on GWs waveforms. We show preliminary results for:

- Values of the potential $\delta \varphi / c^2$, along random rays in numerical simulations and statistics of time-delays.
- Constraints on inhomogeneity with GW and E/M counterparts.

0.000005

0.000000

-0.000005

-0.000010

20

60

Distance

80

0.000000

-0.000005

-0.000010

-0.000015

20

0

80

Distance

100

120

Three-point Gaussian streaming model

Stage IV surveys:

We introduce the Gaussian streaming model for 3PCF.

The necessary velocity statistics can be predicted through linear perturbation theory on quasi-linear scales and above.

Stage V surveys:

We developed the exact streaming model framework for n-point clustering statistics.

1

Joseph Kuruvilla

Toshiya Namikawa (The University of Cambridge)

• The poster summarizes my recent works on B-mode analyses + theoretical works

- Quick Summary
- □ Reconstructing lensing map from BICEP/Keck B-modes
- □ Significant improvement on cosmic birefringence constraints from BICEP/Keck
- The first evidence of correlations btw CMB polarization lensing and galaxy lensing from Subaru HSC and POLARBEAR
- □ Developing B-mode delensing method for Simons Observatory
- □ Constraining tensor non-Gaussianity from B-mode bispectrum of BICEP/Keck
- Derived an optimal estimator for polyspectrum

in collaboration with B. Joachimi and others

- 3x2pt analysis of KiDS + GAMA, to constrain Horndeski gravity, i.e. most general scalar-tensor theory of gravity, covers majority of DE/MG models. First cosmic shear (+ GGL + GC) constraints on Horndeski gravity
- Modelling of baryon feedback, intrinsic alignments, galaxy bias, screening mechanism. Code publicly available
- Four functions of time fully describe linear perturbations in Horndeski gravity. Assume time parameterization → get constraints on parameters. Constraints compatible with ΛCDM

ΛCDM

Horndeski

Alessio Spurio Mancini

ASM et al., arXiv:1901.03686, accepted in MNRAS

THE BAHAMAS PROJECT: EFFECTS A RUNNING SCALAR SPECTRAL INDEX HAS ON LARGE-SCALE STRUCTURE

WHAT WAS DONE?

- Extended the BAHAMAS (McCarthy et al. +17) suite of hydrodynamic simulations, with a further 5 which have a running scalar spectral index imprinted into the initial conditions.
- Examined the effects of running on statistics such as:
 - Nonlinear total matter power spectrum
 - Halo mass function
- Explored how separable the effects due to a running scalar spectral index are from baryonic physics.

WHY?

- Hints that the standard model is incomplete (Planck Collaboration XIII +16, Reiss et al. +17)
- Mild evidence for a negative running (Palanque-Delabrouille et al. +15, Planck Collaboration XIII +16)

Effects should be measurable by upcoming LSS surveys such as LSST or EUCLID

spectral index, $k_o = pivot scale (0.05 Mpc⁻¹), A_s = amp power spectrum at <math>k_0$.

Cosmological constraints from observations of γ **-ray attenuation**

by the extragalactic background light

Radosław Wojtak

りくてく

DARK, University of Copenhagen

A. Domínguez, J. Finke, M. Ajello, K. Helgason, F. Prada, A. Desai, V. Paliya, L. Marcotulli, D. Hartmann

Combine cosmological probes around clusters and voids

Cosmological constraints from *Planck* galaxy clusters with CMB lensing mass bias calibration

Íñigo Zubeldia & Anthony Challinor University of Cambridge

Reanalysis of the *Planck* cluster sample (MMF3 cosmology sample), with:

- CMB lensing mass observable less affected by systematics.
- Likelihood analysis that jointly constrains cosmology (Ω_m , σ_8) and the mass bias parameter, 1-b_{SZ}.

We find a significant mass bias, 0.71 ± 0.10 , and no evidence for tension with the *Planck* CMB.

IZ & Challinor (2019) arXiv:1904.07887