

Relics of cosmic reionization in the high redshift IGM / Lyman-alpha forest & relevance for dark matter constraints

Ewald Puchwein, AIP

collaborators:

Girish Kulkarni, Laura Keating, James Bolton, Martin Haehnelt, Vid Irsic, Matteo Viel

Late and rapid cosmic reionization preferred by the data

Thomson scattering on free electrons CMB $\tau = 0.0544^{+0.0070}_{-0.0081}$ mid point: $z_{re} = 7.68 \pm 0.79$ Planck 2018 VI

Lyman-alpha absorption by neutral hydrogen in the IGM

Lyman-alpha emitting galaxies

$$z_{\rm mid} \sim 7-7.5$$

e.g., Choudhury+15

QSO (near zones)

$$z_{\rm mid} \sim 7-7.5$$

Davies+18

QSO (general IGM)

The IGM and Lyman-alpha forest in postprocessing radiative transfer simulations

-> assign ionizing sources to halos -> perform post-processing radiative transfer with the ATON code -> calibrate source model to data (Lyman-alpha forest, CMB) -> late reionization ending z~5.3 preferred (Kulkarni+19, Keating+19)

Constraining dark matter free streaming

dark matter free streaming suppresses small scale power

Dunstan et al. 2011

Constraining dark matter free streaming

The IGM in a cold and warm dark matter universe

Other effects on small scale Lyman-alpha forest

thermal broadening

Doppler broadening due to thermal motions of hydrogen atoms

> mostly captured in post-processing radiative transfer

pressure smoothing

hydrodynamic reaction to photo-heating

> not captured in post-processing radiative transfer

Hybrid radiative-transfer / hydrodynamical simulations

Puchwein et al. 2019, in prep.

Hybrid radiative-transfer / hydrodynamical simulations

Puchwein et al. 2019, in prep.

Hybrid radiative-transfer / hydrodynamical simulations

Effect of pressure smoothing / patchy reionization on the density distribution of the IGM

Effect of pressure smoothing / patchy reionization on the density distribution of the IGM

Effect of pressure smoothing / patchy reionization on the density distribution of the IGM

Puchwein et al. 2019, in prep.

Effect of patchy reionization on the IGM temperature

Effect of patchy reionization on the IGM temperature

Effect of patchy reionization on the density distribution of the IGM

Puchwein et al. 2019, in prep.

Flux power spectrum and impact of patchy reionization

Puchwein et al. 2019, in prep.

Flux power spectrum and impact of patchy reionization

Puchwein et al. 2019, in prep.

Flux power spectrum and impact of patchy reionization

Puchwein et al. 2019, in prep.

Summary

- Lyman-alpha forest fluctuations favour a very late hydrogen reionization ending at z~5.3 (see Laura Keating's talk)
 - close to sweet spot for constraining dark matter
- new simple method to model patchy reionization in cosmological hydrodynamical simulations
 - additional large scale power in the high-z Lyman-alpha forest
 - effects of fluctuations in pressure smoothing and thermal broadening (partly) cancel (consistent with Wu+19)
 - preliminary: probably minor effect for dark matter free streaming / warm dark matter constraints