Key Results on Dust Attenuation and Ionizing Escape/Gas Covering Fractions at z~2-3

Naveen Reddy

Emission Line Galaxies with MOS, 18 Sep 2017

MOSDEF: Shapley, Kriek, Coil, Mobasher, Siana, ...

HDUV Legacy Survey: Pascal Oesch, Rychard Bouwens, ...

KBSS/KLCS Survey: Chuck Steidel, Milan Bogosavljevic, Max Pettini, ...

MOSDEF

Keck/MOSFIRE rest-optical spectroscopy of galaxies at the cosmic "peak"

HDUV Legacy

HST WFC3/UVIS imaging of the GOODS fields; LBG selections to faint limits at z~0.5-3.0

KLCS

Keck/LRIS rest-UV spectroscopy of galaxies at the cosmos "peak"

Importance of the Dust "Curve" for High-z Galaxies

Recent High-Z Constraints on the Dust Curve

Noll+09, Buat+11,12, Kriek & Conroy (2013), Scoville+15, Salmon+15, Zeimann+15

Based on photometry, UV/optical spectroscopy, and/or comparison to stellar templates CAN WE DO BETTER?

Proxies for Dust at High Redshift

UV Slope

sensitive to age, metallicity, and SFH; measurement can be complicated by presence of 2175 A feature

1000

100

10

1

0.1

-2

2.5

(MJV) (mJV) 1.5 1.0

0.5

-IR/Luv

Stack of N=114

L* Galaxies

-1

Buat+11

2000

Rest Frame Wavelength (Å)

1500

Proxies for Dust at High Redshift

10¹¹

All

z<2

Stacks, all Stacks, z>2

Mid- and Far-IR

observations not sensitive enough to detect typical star-forming galaxies at z>1.5 (requires lensing)

A New Avenue to Exploring Dust at High Redshifts using HI Recombination Lines

BALMER DECREMENTS

(e.g., Calzetti et al. 1994, Kennicutt et al. 2009, Groves et al. 2012, etc...)

MOSFIRE Deep Evolution Field (MOSDEF) Survey

- Rest-frame optical spectra of ~ 1800 H-selected galaxies and AGNs
- 1.37 ≤ z ≤ 3.80
- CANDELS fields
- 48.5 nights with MOSFIRE on Keck I (2012-2016)
- Collaboration between UC Berkeley, UCLA, UC San Diego, UC Riverside

MOSDEF Sampling of "Typical" Star-forming Galaxies at 1.4<z<3.8

Balmer Decrement Measurements

J	Н	K
gn2_05_7979 z=2:207		
gn2_05_8072 z=2.235		
gn2_05_9766 z≠2.194		
ae2_03_1361 z=2.184		
ae2:03_905 z=2.188		
co2_03_13899 z=2.167		
co2_03_13985 z=3_166		
co2_03_10701		40

 $\tau_{\rm b} \equiv \ln\left(\frac{{\rm H}\alpha/{\rm H}\beta}{2.86}\right)$

224 star-forming galaxies at z_{spec}= 1.36 – 2.59

Calculating the Attenuation Curve

Ratios of Composite SEDs in bins of Balmer optical depth

Calculating the Attenuation Curve...

Normalization (Rv)...

Renormalized so that $fQ_{eff}(\lambda \rightarrow 2.85 \mu m)=0$

Systematic uncertainties of $\Delta R_v \approx 0.4$

Similar in shape (and normalization) to SMC at λ >2500 Å Similar in shape (but lower normalization) than Calzetti at λ <2500 Å

Extension of the Curve to the Lyman Break

Extension of the Curve to the Lyman Break

Factor of ~2 lower attenuation for typical E(B-V) at the Lyman break relative to simple extrapolations of attenuation/extinction curves

Reddy+16a

Reddening of Lines vs. Continuum

LOCALLY:

Higher attenuation towards lines-of-sight to massive stars

(e.g., Fanelli et al. 1988, Calzetti et al. 1994, Mas-Hesse & Kunth 1999, Kreckel et al. 2013)

A Possible Physical Interpretation

At high-z: stars of all masses are attenuated by same amount, with larger contribution of dust-enshrouded SF at higher SFRs

Implications for SFRs from the UV or SEDfitting

UV/SED-based SFRs *underpredict* total SFR above \approx 20 M_{\odot}/yr

Similar "Saturation" seen with IR vs. UVbased SFRs

Recent Results from the HDUV Survey

SMC best reproduces the IRX-β Relation for sub-solar metallicity stellar populations

Bouwens+11

Are sub-L* galaxies less dusty?

Rapid Dust Enrichment for CCSNe (Todini & Ferrara 2001)

Epoch of Reionization

Composite Spectrum of 933 z~3 LBGs: fcov(HI)<1

(1) Blue-shifted HI; (2) damping wings of Ly series lines; (3)non-zero residual flux at line centers: fcov(HI) < 1

Spectral Modeling

Details of Our "Two Component" Model:

- Intrinsic Spectrum: Rix+S99, 0.28Z_o, neb. continuum emission; constant SF

Gnedin+08, Razoumov &Sommer-Larsen+10, Zackrisson+13, Ma+16, Dijkstra+16

Fit to composites in bins of UV continuum reddening, while varying fcov

Spectral Modeling

Relationship between Reddening and Covering Fraction

Reddy+16, ApJ, 828, 108 Low-ionization interstellar absorption lines systematically underpredict covering fraction...

Relationship between Reddening and Covering Fraction

Comparison with Stellar Population Models

(f900/f1500)_{int} >~ 0.240 ± 0.047

Galaxies with *large* covering fractions provide the most sensitive constraints on the intrinsic LyC production rate

Limit favors models that include weaker stellar winds, a shallower IMF, and/or stellar rotation/binarity

EW Measurements from MOSDEF

MASS DEPENDENCE

Reddy+, in prep

MOSDEF: Multiple Balmer Emission Lines

R~3500

Conclusions

• Large sample of Balmer decrements aids in calculating the attenuation curve *relevant for the stellar continuum:*

- Difference in total attenuation increases with SFR
- Data suggest a moderately reddened stellar population that dominates the UV/optical SED, and a second, dustier population, that dominates the line/bolometric luminosities at higher SFRs [Reddy et al. 2015, ApJ, 806, 259]

• SMC curve appears to be most appropriate for sub-solar metallicity stellar populations at high-redshift [Reddy et al. 2017, ApJ, submitted]

- Modeling of z~3 LBG spectra to obtain empirical constraints between reddening and gas covering fraction:
 - Photoelectric absorption dominates the depletion of LyC photons

 Modeling can be used to predict observed LyC-to-UV flux ratios or, alternatively, constrain ionizing stellar populations at high redshift
[Reddy et al. 2016a, ApJ, 828, 107; Reddy et al. 2016b, ApJ, 828, 108]