Generative models in cosmology and beyond (From cosmological data analysis to fast Bayesian methods and machine learning)

Uroš Seljak

UC Berkeley/LBL

Outline

- Generative models create synthetic data
- Full N-body or hydro is a (not fast) generative model
- Generative models as an optimal parameter estimation problem in cosmology
- Physics based generative models
- Generative models for Bayesian evidence
- Generative models for machine learning
- w. B. Dai, H. Jia, C. Modi, Y. Feng, B. Yu...

Current data analysis in cosmology

- We have some data such as galaxy positions, weak lensing distortions, CMB...
- The goal of data analysis is to extract information about cosmological parameters from the probability distribution of data: data likelihood $p_{\theta}(x)$
- If the field is Gaussian (e.g. CMB) the likelihood depends only on correlation function or power spectrum. We have good methods (e.g. optimal quadratic estimator)
- There is a lot more information in galaxies, weak lensing, that are in higher order correlations
- How do we extract these? How do we get their covariance matrix? No obvious solution.

Alternative: "optimal" transport

- We want data likelihood $p_{\theta}(x)$
- Monge 1781: Can we transform with y=G(x) a given probability distribution of the data to another, such as a simple multi-variate Gaussian?
- $p_{\theta}(x)dx=q(y)dy$, so $p_{\theta}(x)=q(y)|dy/dx|$

$$p_{\theta}(\boldsymbol{x}) = N[\mathcal{G}_{\theta}(\boldsymbol{x}); \boldsymbol{0}, \boldsymbol{I}] |\nabla_{\boldsymbol{x}} \mathcal{G}_{\theta}|$$

- We need G_{θ} (x) as a function of cosmology parameters θ and Jacobian too
- Goal: finding G(x) means to Gaussianize data
- In cosmology this is equivalent to reconstruction of initial density, which is Gaussian distributed
- If replace Gaussian q(y) with uniform (PDF to CDF): copula

Likelihood formulation without Jacobian

$$p_{\theta}(\boldsymbol{x}) = N[\mathcal{G}_{\theta}(\boldsymbol{x}); \boldsymbol{0}, \boldsymbol{I}] |\nabla_{\boldsymbol{x}} \mathcal{G}_{\theta}|$$

Introduce latent space z=G(x)

$$p_{\theta}(\boldsymbol{x}) = \int d\boldsymbol{z} \exp \left\{ -\frac{1}{2} \sum_{j=1}^{N} \left[z_j^2 + \ln 2\pi \right] \right\} \delta_D[\boldsymbol{x} - \mathcal{G}^{-1}(\boldsymbol{z})]$$

$$p_{\theta}(\boldsymbol{x}) = \lim_{\sigma^2 \to 0} \int d\boldsymbol{z} \exp \left\{ -\frac{1}{2} \sum_{j=1}^{N} \left[z_j^2 + \frac{[x_j - \mathcal{G}_j^{-1}(\boldsymbol{z})]^2}{\sigma^2} + 2\ln 2\pi + \ln \sigma^2 \right] \right\}$$

• Introduce noise and generative (forward) model G-1

$$p_{\theta}(\boldsymbol{x}) = \int d\boldsymbol{z} \exp \left\{ -\frac{1}{2} \sum_{j=1}^{N} \left[z_{j}^{2} + \frac{[x_{j} - \mathcal{G}_{j\theta}^{-1}(\boldsymbol{z}, \sigma^{2} = 0)]^{2}}{\sigma_{j}^{2}} + 2 \ln 2\pi + \ln \sigma_{j}^{2} \right] \right\}$$

• We marginalize over z to get likelihood of parameters θ

Cosmology Forward model: from initial to final dark matter to galaxies

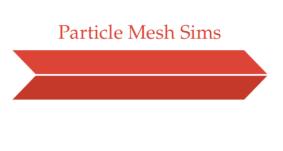
Final

Dark

Matter

Field

(d)



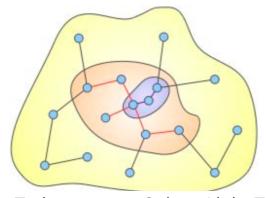
Group finding:
Friends of Friends

Dark Matter Halos (d)

$$\mathbf{p}_{n+1/2} = \mathbf{p}_{n-1/2} - F(a_n) \nabla \phi_n \Delta a,$$
 $\mathbf{x}_{n+1} = \mathbf{x}_n + \frac{F(a_{n+1/2})}{a_{n+1/2}^2} \mathbf{p}_{n+1/2} \Delta a$

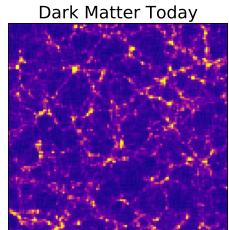
Poisson Equation

$$ilde{
abla}^2 ilde{\phi}=rac{3}{2}rac{\Omega_0}{a}(ilde{
ho}-1),$$



For *N* time steps

Initial Dark Matter

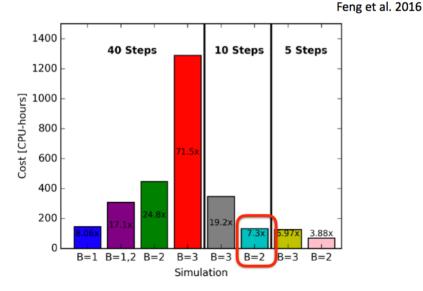


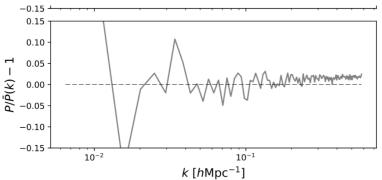
FastPM performance on halos

FastPM with 5(10) steps only 3.8(7.3) times slower than initial condition generator

It enforces ZA on large scales

Comparison against very high resolution simulation: 1-2% accurate for 5 time steps using abundance matching of halos





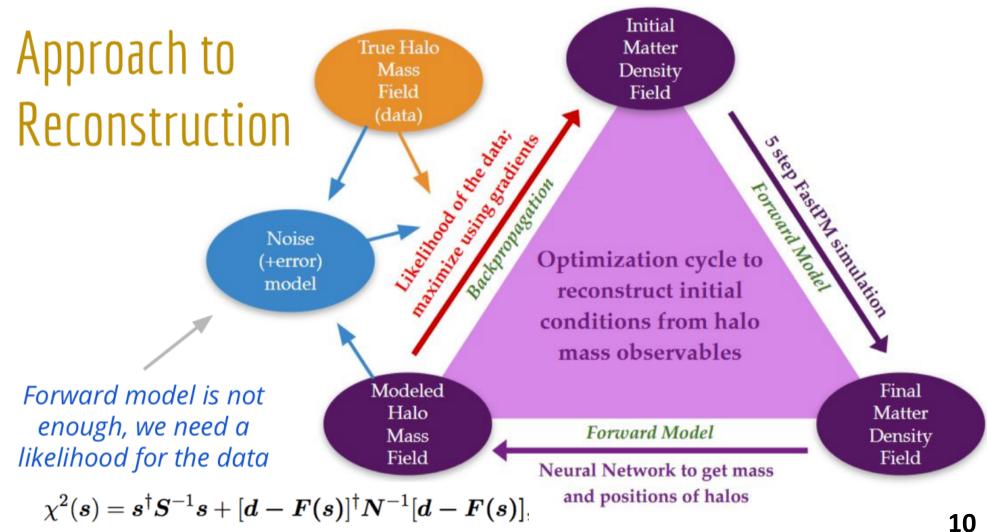
Elena Massara, Yu Feng, US

How to find the initial density field?

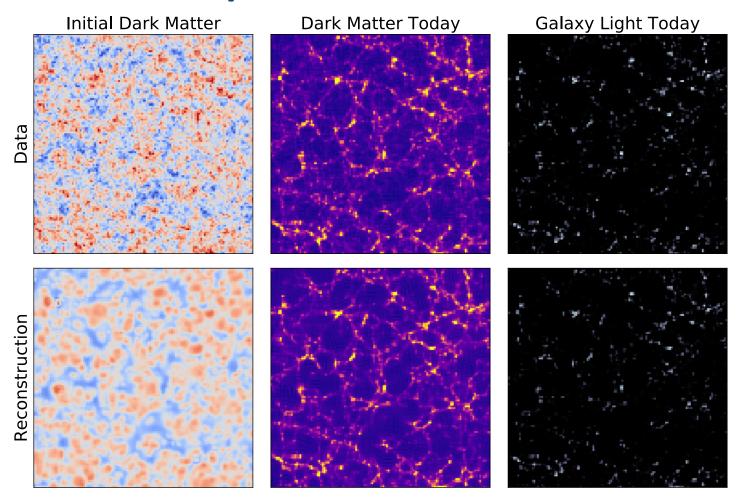
- maximize a posterior (MAP) of z, ie solve the optimization problem in 10⁶++ dimensions
- To solve this we need a gradient of data x with respect to initial density z: this is 10^{6++} x 10^{6++} matrix, fortunately only its product with a vector is needed
- Get the gradient using backpropagation through FastPM kick/drift operations
- Replace FoF with differentiable operation (we use neural networks)
- O(100) iterations are used in optimization

Initial density reconstruction

We replace dark matter galaxy connection physical modeling with neural network trained on simulations: differentiable and fast

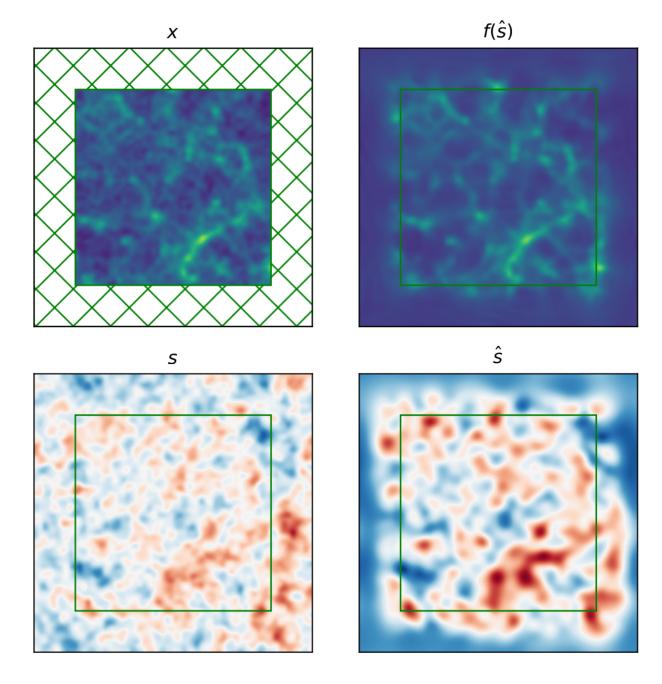


Example of MAP reconstruction



We use optimization that finds the best solution in terms of final data (optimal filter). This 3-d example optimizes in 2 million dimensions. Galaxy are sparse tracers, so we loose small scale info

Incomplete data: dark matter example



From MAP to parameter estimation

- Simple Maximum Likelihood Estimator is wrong when number of parameters N₂ is similar to the data size N₂
- Instead we have to marginalize out latent space first

$$p_{\theta}(\boldsymbol{x}) = \int d\boldsymbol{z} \exp \left\{ -\frac{1}{2} \sum_{j=1}^{N} \left[z_{j}^{2} + \frac{[x_{j} - \mathcal{G}_{j\theta}^{-1}(\boldsymbol{z}, \sigma^{2} = 0)]^{2}}{\sigma_{j}^{2}} + 2 \ln 2\pi + \ln \sigma_{j}^{2} \right] \right\}$$

The marginalization integral gives rise to Hessian determinant

$$-\ln p(\boldsymbol{x}|\boldsymbol{z}) = \tilde{\mathcal{L}}_p(\boldsymbol{z}, \boldsymbol{\mu_{\mathcal{S}|\mathcal{Z}}}, \boldsymbol{x}) - \frac{1}{2} \ln \det \boldsymbol{\Sigma_{\mathcal{S}|\mathcal{Z}}} - \frac{1}{2} N_s \ln(2\pi) + \ln p(\boldsymbol{z}).$$

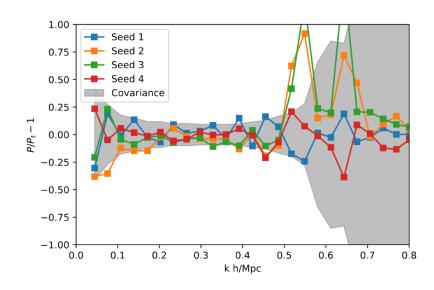
- Only now we can maximize p(x) wrt θ leads to find MLE parameters
- We use simulation based evaluation of Hessian determinant derivative: unbiased even for non-Gaussian case, no sampling is needed, but optimality is not guaranteed
- Covariance matrix can also be obtained using simulations

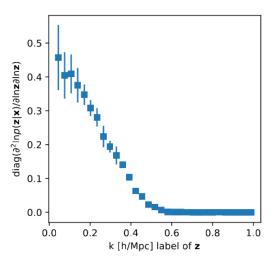
Cosmology is all about error quantification

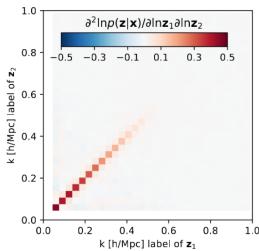
Reconstruction of linear cosmological power: we removed BAO smearing (perfect BAO reconstruction)

Response based inverse covariance matrix

No need to run mock simulations to get covariance matrix

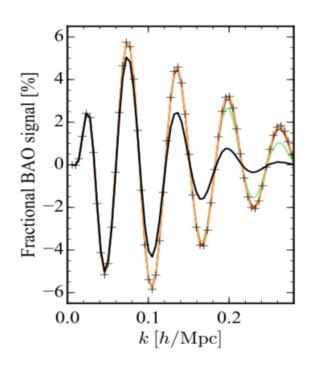






Future directions

- Compare these methods to HMC sampling in terms of errors (much more expensive, but has better optimality guarantees)
- Marginalizing over astrophysics parameters means many more simulations varying these parameters will be needed
- Scale up in terms of volume and mass resolution: for DESI and LSST we will likely need to run 10¹² particle simulations hundreds to thousands of times
- Payoff: optimal analysis, best BAO reconstruction, up to 2 x smaller error



Potential Gradient Descent

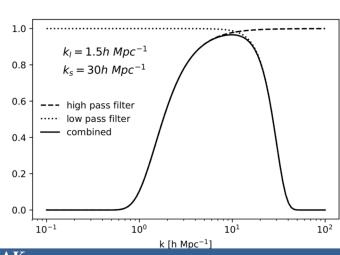
 How to improve resolution of FastPM? Add another displacement field that moves particles inward or outward

The PGD correction displacement:

$$\mathbf{S} = -\alpha \nabla \mathbf{\hat{O}_h} \mathbf{\hat{O}_l} \phi$$

High pass filter \hat{O}_h prevents the large scale growth, low pass filter \hat{O}_l reduces the numerical effect

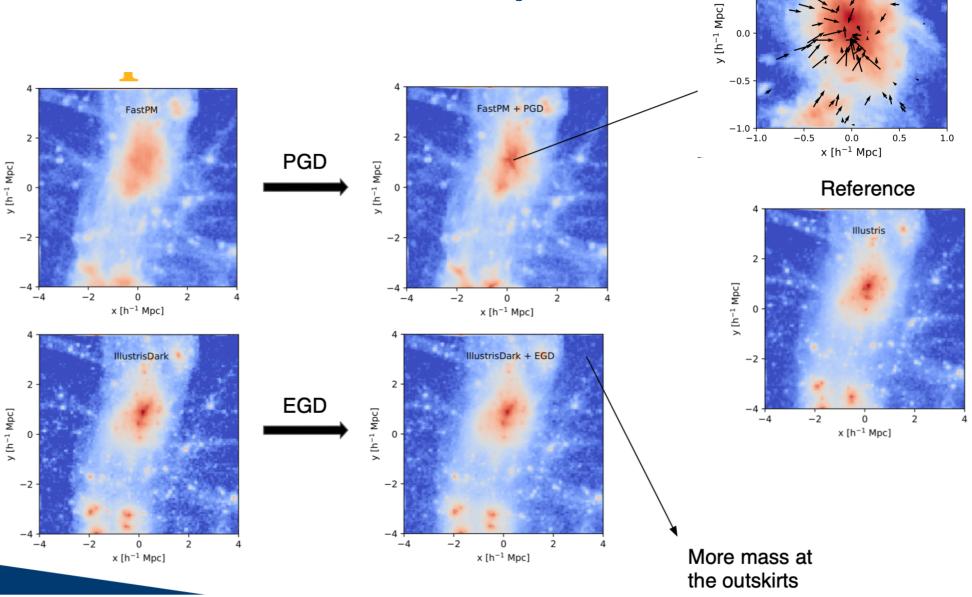
- Train on high resolution simulations (Dai etal 2017).
- Two free parameters only (shape of small scale force)
- Cheap and fast machine learning (in ML usually many more parameters to train)
- Fast to generate (2 extra FFTs)
- For hydro feedback effects: use enthalpy (EGD)



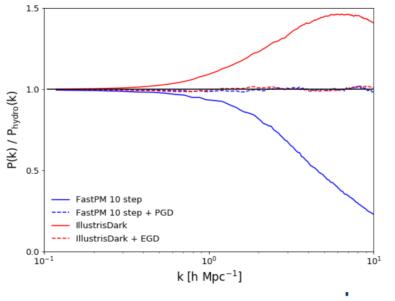
Visual inspection

1.0

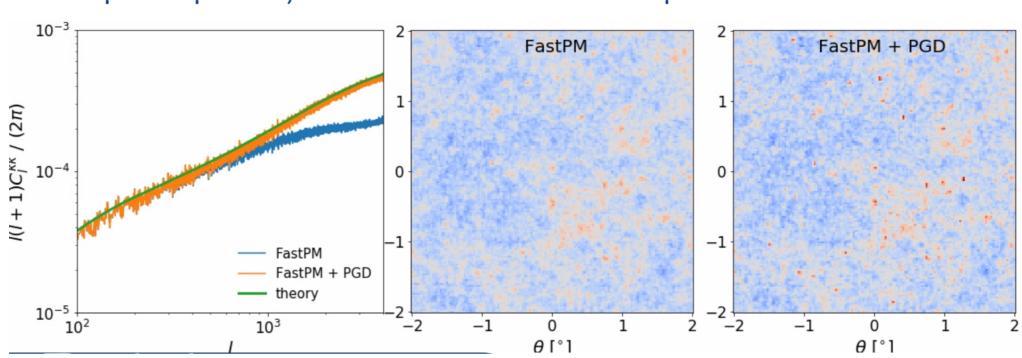
0.5 -



FastPM with PGD power spectrum

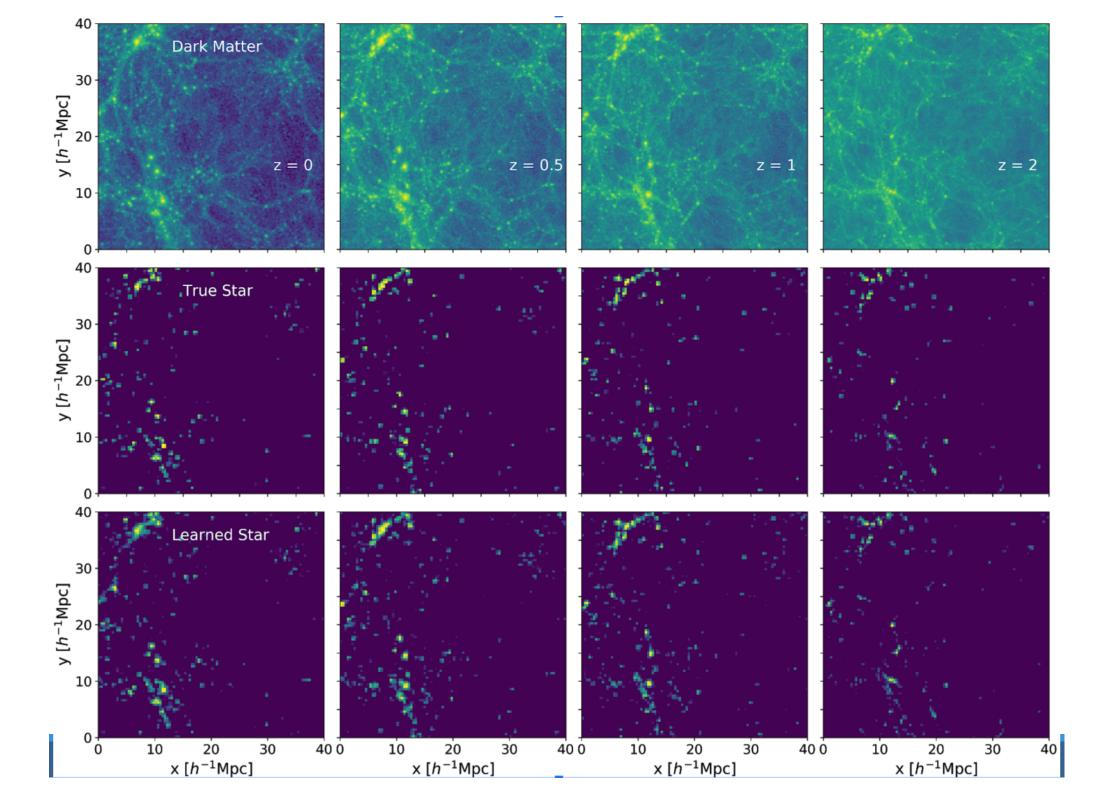


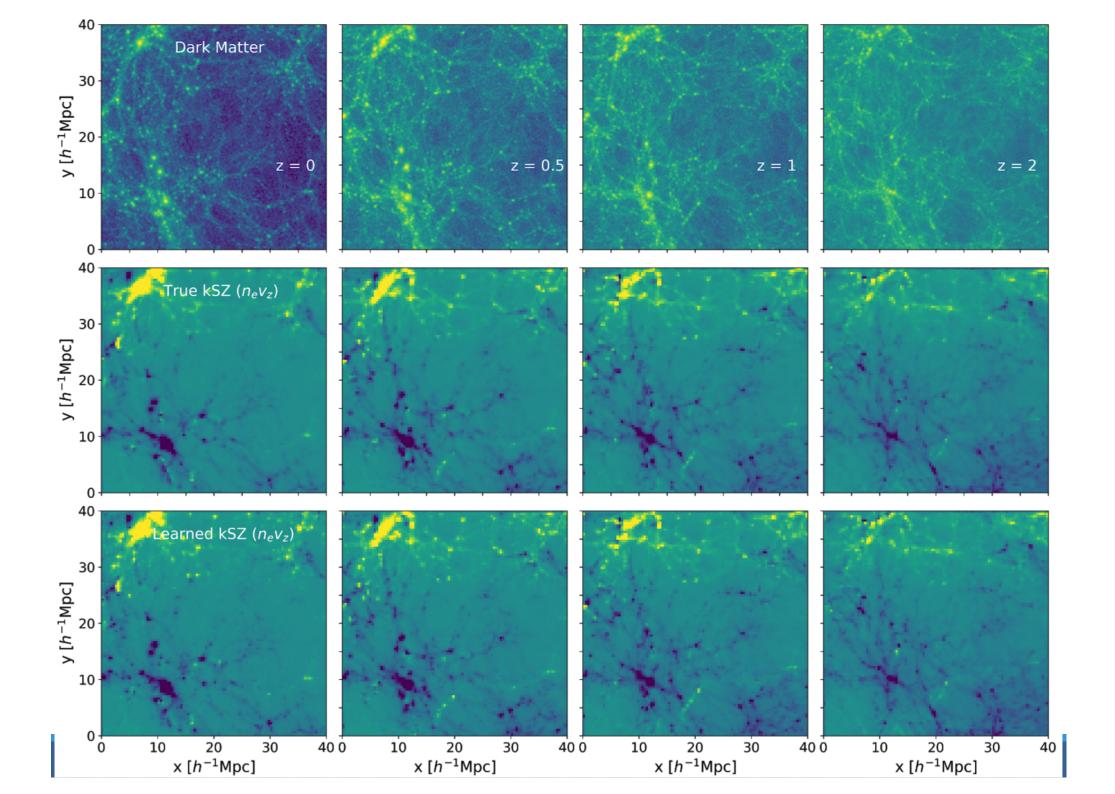
Weak lensing maps

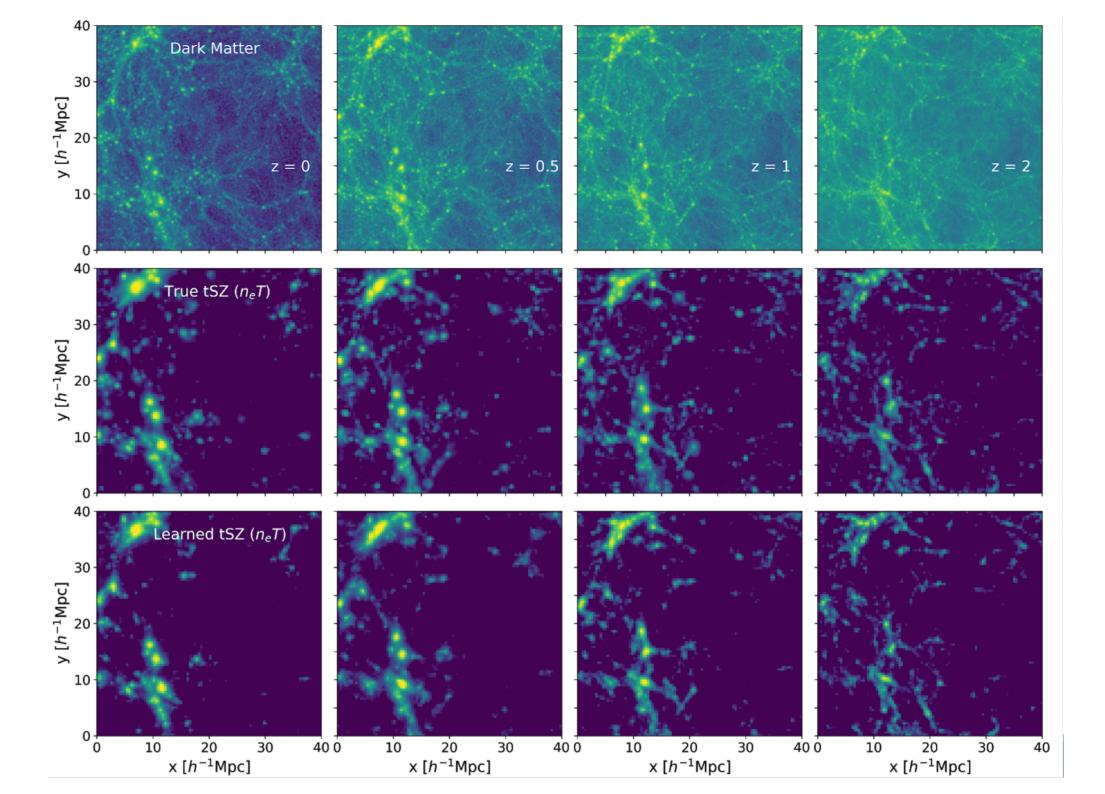


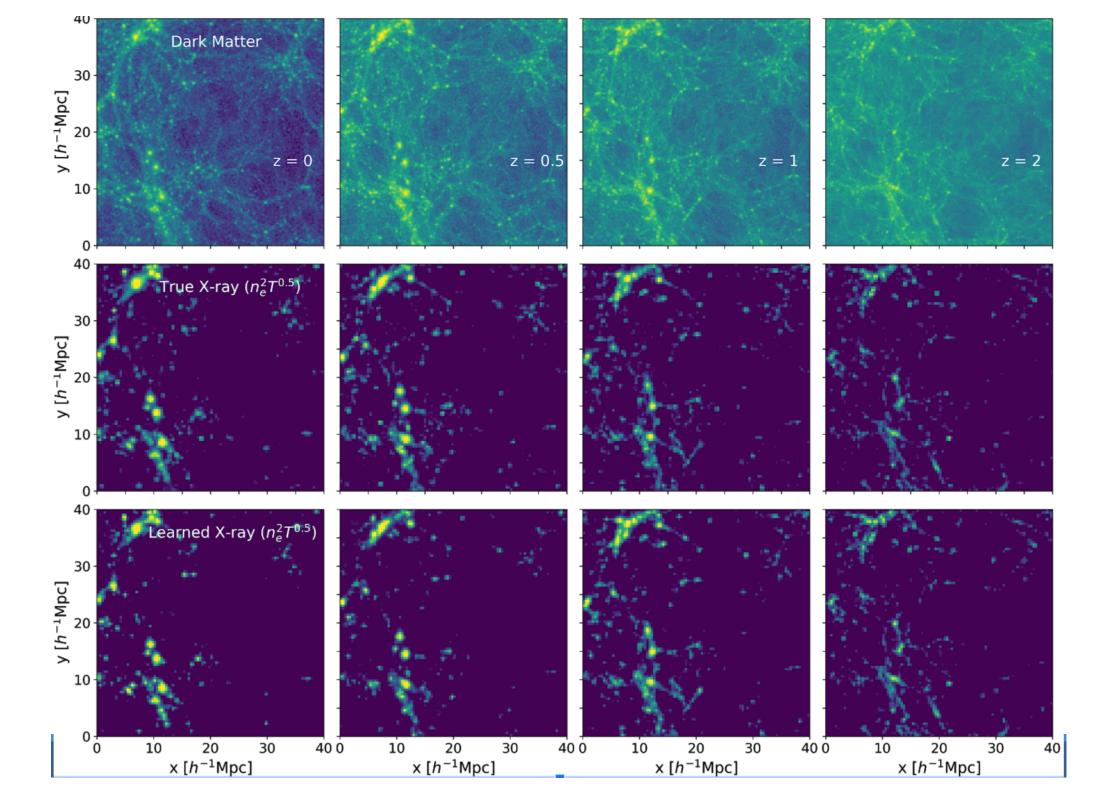
Generative models of all observables

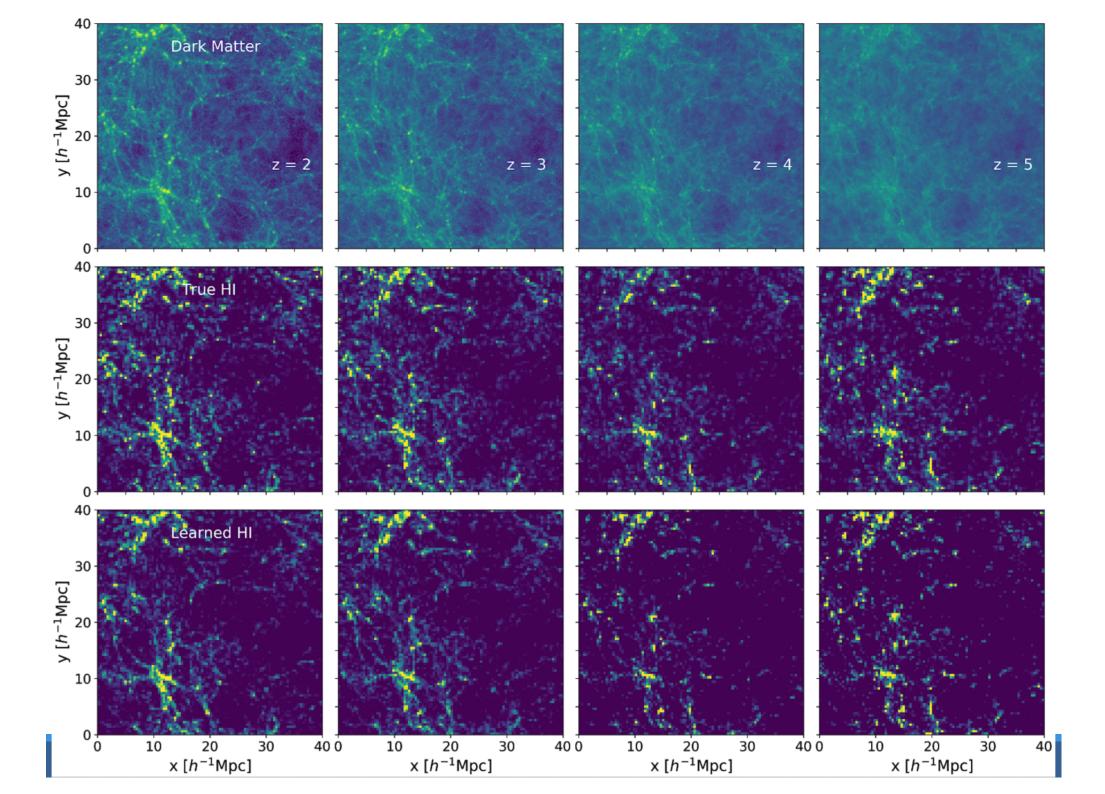
- We have many different data in cosmology: stellar mass, gas information (X-rays, tSZ, kSZ), dark matter, HI...
- Many of these come from expensive hydro simulations
- We need a fast way to generate forward models
- We need it to be differentiable so we can take a gradient of the data with respect to initial density modes
- PGD+EGD trained on Illustris TNG-300 hydro outputs: 7 parameter (Dai et 2019, in prep) model
- These are all differentiable, so easy to do gradient backpropagation





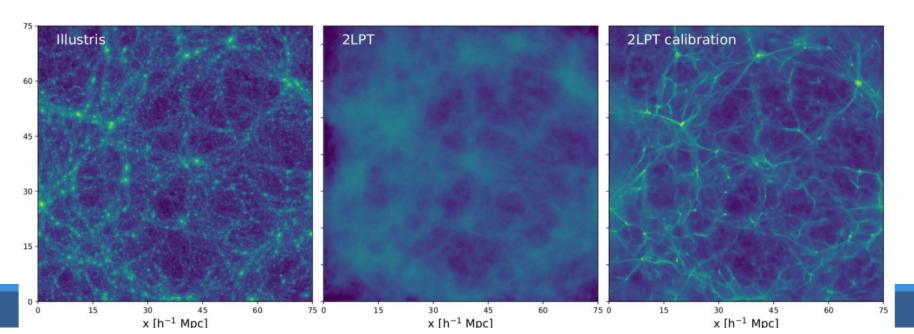






Future directions in generative models

- Trainon low resolution DM on high resolution hydro
- We need to get prior distributions of parameters from different hydro sims: astrophysics prior
- We can also create generative models from data (e.g. CMB foregrounds)
- Can we make even cheaper generative models?
 (Zeldovich, 1-d, 2-d)



Next step: posterior analysis

- So far we have obtained data likelihood or its summary statistic (e.g. optimal power spectrum), we need posterior of cosmological parameters marginalized over nuisance parameters (astrophysics)
- MCMC is probably out of the question, since we would need a full simulation at every point
- We need cheaper and faster posterior analyses
- Variational methods (Variational Inference): based on stochastic minimization of KL divergence: ADVI
- This is Monte Carlo integration, suffers from sampling noise: slow N^{-1/2} convergence

Our proposal: EL₂O f-divergence arxiv 1901.04454

With Byeonghee Yu

$$\mathcal{L}_q = -\ln q(z), \ q(z) = N(z; \mu, \Sigma)$$
 $\mathcal{L}_p = -\ln p(z|x)$

- We propose to minimize L_2 norm between L_p and L_q . It needs to be sampled from some fiducial probability distr, which can be q
- EL₂O: expectation with L₂ optimization

$$\mathrm{EL_2O} = \langle (\mathcal{L}_q - \mathcal{L}_p - c)^2 \rangle_{\tilde{p}}$$
 f-divergence c is approx. log evidence

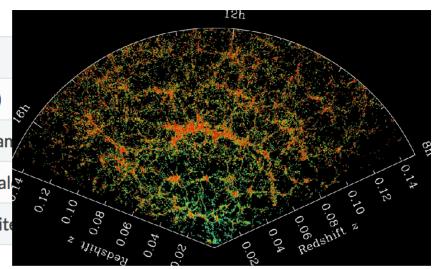
- if q covers p it is noiseless, if not it finds the closest solution to it
- No noise because both log p and log q are evaluated at the same position, L₂ is positive definite: solving linear least square (convex)
- No integration: no sampling noise
- Our proposal: replace noisy KLD with noiseless EL₂O

BOSS RSD analysis

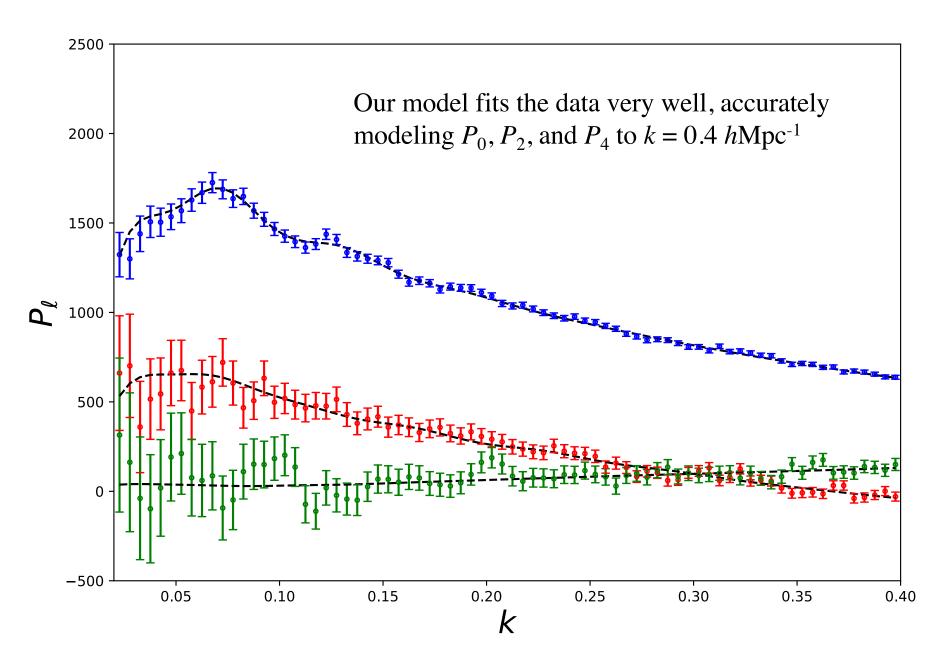
- Take summary statistics of galaxy clustering $P_l(k)$, where l = 0, 2, 4 are the multipoles of the power spectrum and k is the wavevector.
- **Data**: Measured $P_1(k)$ of the BOSS DR12 galaxies (LOWZ+CMASS)
- Covariance: nearly diagonal, but model dependent (sampling variance component), plus trispectrum component
- Model: Perturbation theory predicted $P_l(k)$ which depends on 13 parameters, presented in Hand et al

$$P_{gg}^{S}(\mathbf{k}) = (1 - f_s)^2 P_{cc}^{S}(\mathbf{k}) + 2f_s(1 - f_s) P_{cs}^{S}(\mathbf{k}) + f_s^2 P_{ss}^{S}(\mathbf{k})$$

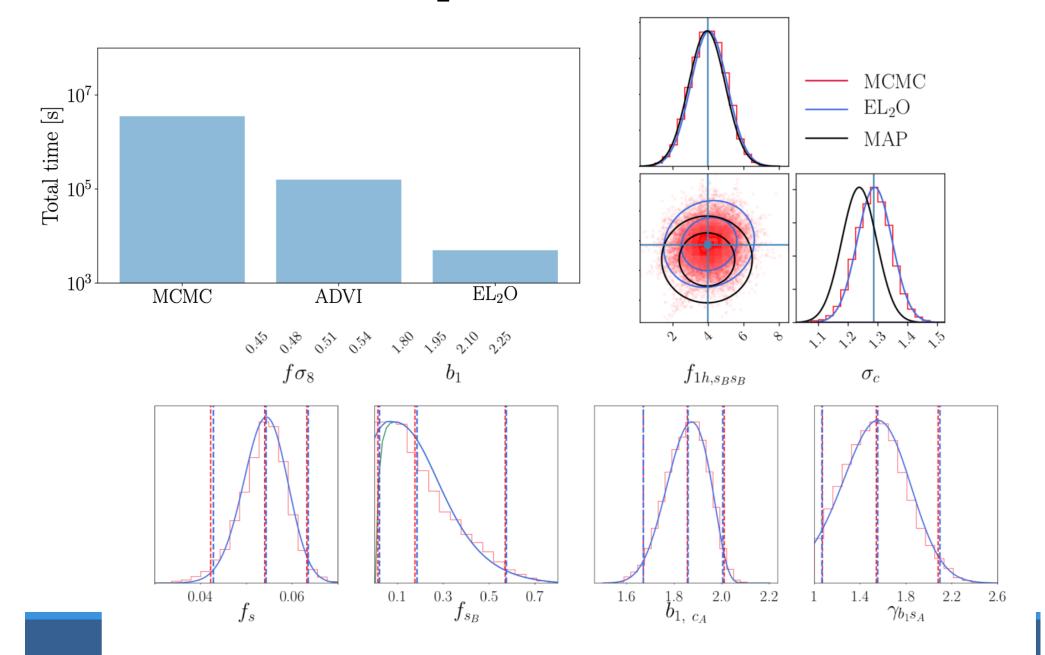
Sample	Description
type A centrals	isolated centrals (no satellites in the same halo)
type B centrals	non-isolated centrals (at least one satellite in san
type A satellites	isolated satellites (no other satellites in same hal
type B satellites	non-isolated satellites (at least one other satellite



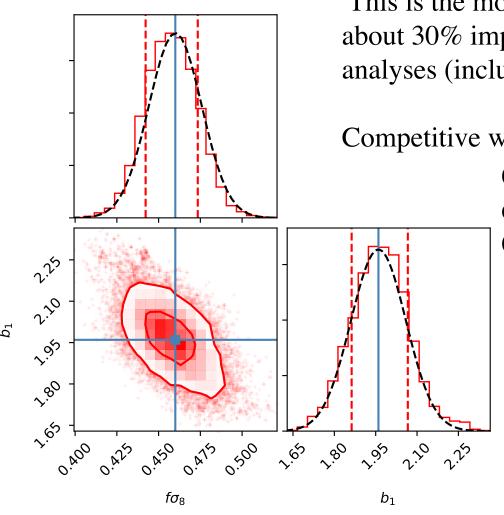
BOSS RSD analysis with analytic PT model



Near perfect agreement of EL₂O posterior with MCMC with 125 EL₂O evaluations vs 10⁵ for MCMC



BOSS RSD analysis cosmological constraints

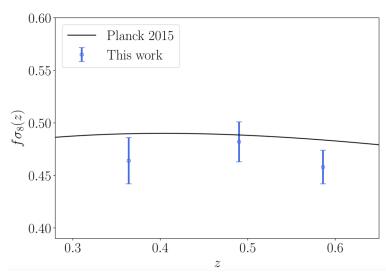


This is the most accurate RSD analysis to date, about 30% improvement over previous BOSS analyses (including recent EFT papers)

Competitive with weak lensing

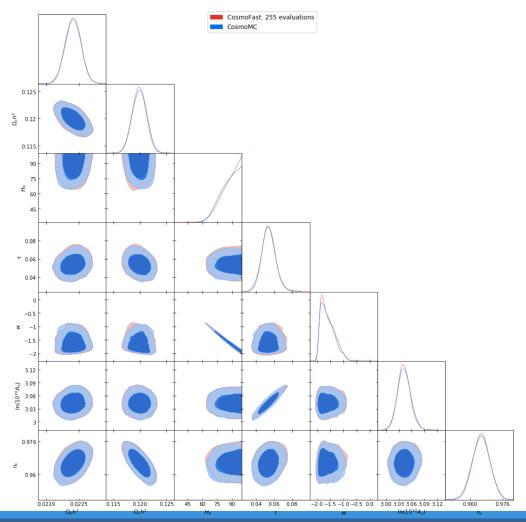
Combined f_{σ_8} error of 3%: smallest error to date

Consistent with standard cosmology

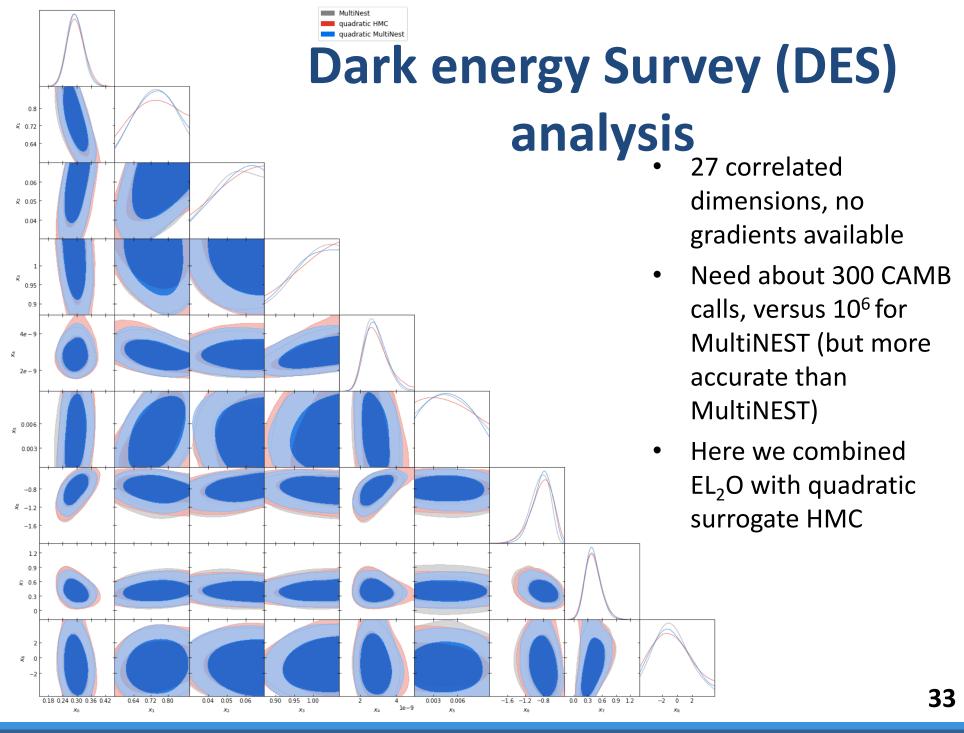


BayesFast Planck analysis

- Towards a general fast Bayesian posterior method
- Planck 8 dim with w: EL₂O (250 CAMB calls) vs MCMC (10⁶ CAMB calls)



Code release: work in progress with He Jia



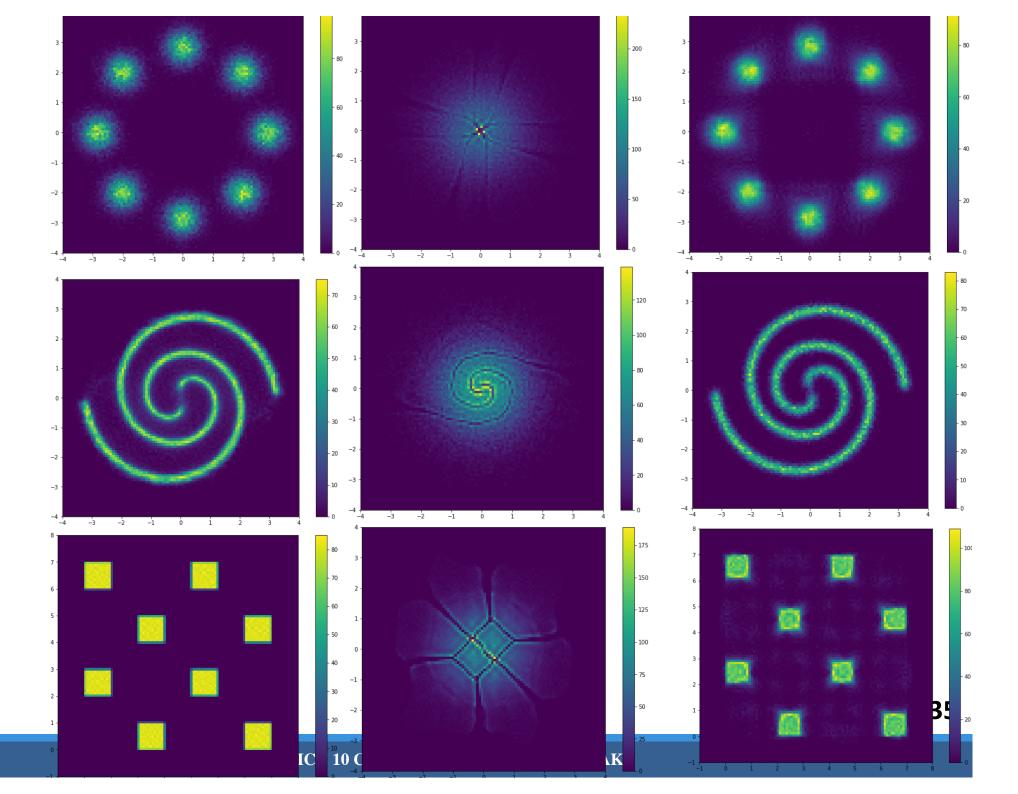
Bayesian evidence

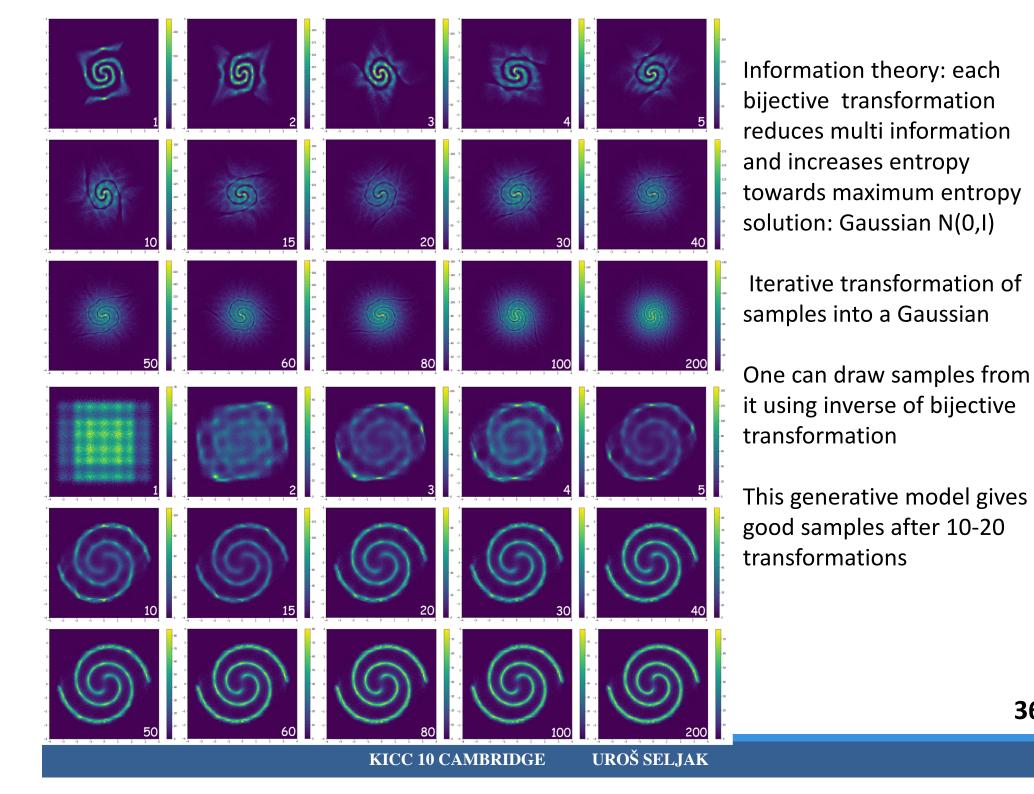
$$p_{\theta}(\boldsymbol{x}) = \int d\boldsymbol{z} p(\boldsymbol{z}) p_{n\theta}(\boldsymbol{x}|\boldsymbol{z})$$

- This is an integral of likelihood over the prior, extremely expensive with MCMC (nested sampling, annealed importance sampling)
- Generative models are normalized, MCMC samples are not
- We can obtain it by finding a bijective generative model that reproduces the distribution of MCMC samples
- We can model very complex distributions by transporting the samples to a Gaussian (optimal transport, Gaussianization)

$$p_{\theta}(\boldsymbol{x}) = N[\mathcal{G}_{\theta}(\boldsymbol{x}); \boldsymbol{0}, \boldsymbol{I}] |\nabla_{\boldsymbol{x}} \mathcal{G}_{\theta}|$$

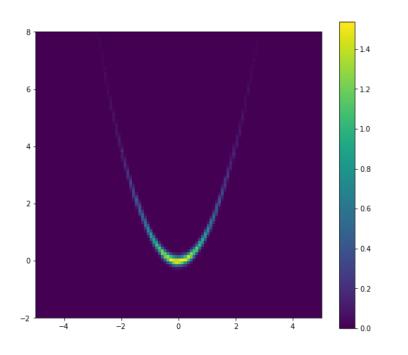
- Need to keep track of Jacobian
- Can be improved by importance or bridge sampling

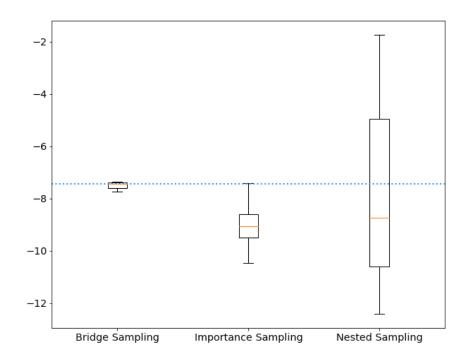




Bayesian evidence

- Hard example: 32-dimensional thin rotated banana
- A lot faster and more accurate than AIS or nested sampling
- 22s (our method) versus 30 min for dynesty (nested sampler)





Summary

- In cosmology we have good generative models (simulations), but we need them to be fast and we need their gradient with respect to 10⁶⁺⁺ initial density parameters: FastPM trained on hydro sims
- Reconstruction of initial density is inverse problem: if we can solve it we can optimally extract cosmological information. We now have all the tools, we just need to scale it to the datasizes we have
- Similar generative model ideas can also be applied to Bayesian posterior and evidence calculations: potential for very large reduction in CPU relative to MCMC methods

Future of supervised ML: generative learning

- Learn $p_{\theta}(x)$ from labeled data or simulations
- for different hypotheses θ , use likelihood ratio to classify or regress
- Supervised ML is dominated by discriminative learning (for a good reason)
- Example: 30 dimensional
 Atlas Higgs data, background
 versus signal

