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Generative models in cosmology and 
beyond (From cosmological data analysis to fast 
Bayesian methods and machine learning)
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Outline
• Generative models create synthetic data 
• Full N-body or hydro is a (not fast) generative 

model
• Generative models as an optimal parameter 

estimation problem in cosmology 
• Physics based generative models
• Generative models for Bayesian evidence
• Generative models for machine learning
• w. B. Dai, H. Jia, C. Modi, Y. Feng, B. Yu…
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Current data analysis in cosmology
• We have some data such as galaxy positions, weak lensing 

distortions, CMB…
• The goal of data analysis is to extract information about 

cosmological parameters from the probability distribution 
of data: data likelihood pq(x)

• If the field is Gaussian (e.g. CMB) the likelihood depends 
only on correlation function or power spectrum. We have 
good methods (e.g. optimal quadratic estimator)

• There is a lot more information in galaxies, weak lensing, 
that are in higher order correlations

• How do we extract these? How do we get their covariance 
matrix? No obvious solution. 

3



KICC 10 CAMBRIDGE           UROŠ SELJAK

Alternative: “optimal” transport
• We want data likelihood pq(x)
• Monge 1781: Can we transform with y=G(x) a given 

probability distribution of the data to another, such as a 
simple multi-variate Gaussian?

• pq(x)dx=q(y)dy, so pq(x)=q(y)|dy/dx|

• We need Gq (x) as a function of cosmology parameters q
and Jacobian too

• Goal: finding G(x) means to Gaussianize data 
• In cosmology this is equivalent to reconstruction of initial 

density, which is Gaussian distributed
• If replace Gaussian q(y) with uniform (PDF to CDF): copula
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Likelihood formulation without Jacobian

• Introduce latent space z=G(x)

• Introduce noise and generative (forward) model G-1

• We marginalize over z to get likelihood of parameters q 5
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Cosmology Forward model: from initial to final 
dark matter  to  galaxies

6



KICC 10 CAMBRIDGE           UROŠ SELJAK

FastPM performance on halos
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FastPM with 5(10) steps only 
3.8(7.3) times slower than initial 
condition generator

It enforces ZA on large scales

Comparison against very high 
resolution simulation: 1-2% 
accurate for 5 time steps using  
abundance matching of halos

Elena Massara, Yu 
Feng, US
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How to find the initial density field?
• maximize a posterior (MAP) of z, ie solve the 

optimization problem in 106++ dimensions
• To solve this we need a gradient of data x 

with respect to initial density z: this is 
106++x106++ matrix, fortunately only its 
product with a vector is needed

• Get the gradient using backpropagation 
through FastPM kick/drift operations

• Replace FoF with differentiable operation 
(we use neural networks)

• O(100) iterations are used in optimization
9
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Initial density reconstruction
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We replace dark matter galaxy connection physical modeling with neural 
network trained on simulations: differentiable and fast 
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Example of MAP reconstruction
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We use optimization that finds the best solution in terms of final 
data (optimal filter). This 3-d example optimizes in 2 million 
dimensions. Galaxy are sparse tracers, so we loose small scale info
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Incomplete 
data: dark 

matter 
example
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From MAP to parameter estimation
• Simple Maximum Likelihood Estimator is wrong when number of 

parameters Nz is similar to the data size Nx

• Instead we have to marginalize out latent space first

The marginalization integral gives rise to Hessian determinant

• Only now we can maximize p(x) wrt q leads to find MLE parameters
• We use simulation based evaluation of Hessian determinant 

derivative: unbiased even for non-Gaussian case, no sampling is 
needed, but optimality is not guaranteed

• Covariance matrix can also be obtained using simulations 13
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Cosmology is all about error quantification
Reconstruction of linear 
cosmological power: we 
removed BAO smearing 
(perfect BAO 
reconstruction)

Response based inverse 
covariance matrix

No need to run mock 
simulations to get 
covariance matrix
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Future directions
• Compare these methods to HMC 

sampling in terms of errors (much 
more expensive, but has better 
optimality guarantees)

• Marginalizing over astrophysics 
parameters means many more 
simulations varying these parameters 
will be needed 

• Scale up in terms of volume and mass 
resolution: for DESI and LSST we will 
likely need to run 1012 particle 
simulations hundreds to thousands of 
times 

• Payoff: optimal analysis, best BAO 
reconstruction, up to 2 x smaller error
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Potential Gradient Descent
• How to improve resolution of FastPM? Add another displacement field 

that moves particles inward or outward

• Train on high resolution simulations (Dai etal 2017). 
• Two free parameters only (shape of small scale force)
• Cheap and fast machine learning (in 
ML usually many more parameters to train)
• Fast to generate (2 extra FFTs)
• For hydro feedback effects: use enthalpy 
(EGD) 16
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Visual inspection
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FastPM with PGD power spectrum 
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Weak lensing 
maps
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Generative models of all observables

• We have many different data in cosmology: stellar mass, 
gas information (X-rays, tSZ, kSZ), dark matter, HI…

• Many of these come from expensive hydro simulations
• We need a fast way to generate forward models
• We need it to be differentiable so we can take a gradient of 

the data with respect to initial density modes
• PGD+EGD trained on Illustris TNG-300 hydro outputs: 7 

parameter (Dai et 2019, in prep) model
• These are all differentiable, so easy to do gradient 

backpropagation
19
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Future directions in generative models
• Trainon low resolution DM on high resolution hydro
• We need to get prior distributions of parameters 

from different hydro sims: astrophysics prior
• We can also create generative models from data (e.g. 

CMB foregrounds)
• Can we make even cheaper generative models? 

(Zeldovich, 1-d, 2-d)
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Next step: posterior analysis
• So far we have obtained data likelihood or its summary 

statistic (e.g. optimal power spectrum), we need 
posterior of cosmological parameters marginalized over 
nuisance parameters (astrophysics)

• MCMC is probably out of the question, since we would 
need a full simulation at every point

• We need cheaper and faster posterior analyses
• Variational methods (Variational Inference): based on 

stochastic minimization of KL divergence: ADVI
• This is Monte Carlo integration, suffers from sampling 

noise: slow N-1/2 convergence
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Our proposal: EL2O f-divergence  arxiv 1901.04454

• We propose to minimize L2 norm between Lp and Lq. It needs to be 
sampled from some fiducial probability distr, which can be q

• EL2O: expectation with L2 optimization
f-divergence
c is approx. log evidence

• if q covers p it is noiseless, if not it finds the closest solution to it
• No noise because both log p and log q are evaluated at the same 

position,  L2 is positive definite: solving linear least square (convex)
• No integration: no sampling noise
• Our proposal: replace noisy KLD with noiseless EL2O 27

With Byeonghee Yu

http://arxiv.org/abs/1901.04454
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BOSS RSD analysis
• Take summary statistics of galaxy clustering Pl (k), where l = 0, 2, 4 are the 

multipoles of the power spectrum and k is the wavevector. 

• Data: Measured Pl (k) of the BOSS DR12 galaxies (LOWZ+CMASS)
• Covariance: nearly diagonal, but model dependent (sampling variance 

component), plus trispectrum component
• Model: Perturbation theory predicted Pl (k) which depends on 13 

parameters, presented in Hand etal
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BOSS RSD analysis with analytic PT model

Our model fits the data very well, accurately 
modeling P0, P2, and P4 to k = 0.4 hMpc-1
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Near perfect agreement of EL2O posterior with 
MCMC with 125 EL2O evaluations vs 105 for MCMC
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BOSS RSD analysis cosmological constraints

EL2O
This is the most accurate RSD analysis to date, 
about 30% improvement over previous BOSS 
analyses (including recent EFT papers) 

Competitive with weak lensing

31

Combined fs8 error of 3%: smallest 
error to date
Consistent with standard cosmology
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BayesFast Planck analysis
• Towards a general fast Bayesian posterior method
• Planck 8 dim with w: EL2O (250 CAMB calls) vs MCMC (106 CAMB calls)

32

Work with He Jia (in prep)

Code release: work 
in progress with He 
Jia
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Dark energy Survey (DES) 
analysis

• 27 correlated 
dimensions, no 
gradients available

• Need about 300 CAMB 
calls, versus 106 for 
MultiNEST (but more 
accurate than 
MultiNEST)

• Here we combined 
EL2O with quadratic 
surrogate HMC
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Bayesian evidence

• This is an integral of likelihood over the prior, extremely expensive 
with MCMC (nested sampling, annealed importance sampling)

• Generative models are normalized, MCMC samples are not
• We can obtain it by finding a bijective generative model that 

reproduces the distribution of MCMC samples
• We can model very complex distributions by transporting the 

samples to a Gaussian (optimal transport, Gaussianization)

• Need to keep track of Jacobian
• Can be improved by importance or bridge sampling 34



KICC 10 CAMBRIDGE           UROŠ SELJAK

port

35
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Information theory: each 
bijective  transformation 
reduces multi information 
and increases entropy 
towards maximum entropy 
solution: Gaussian N(0,I)

Iterative transformation of 
samples into a Gaussian

One can draw samples from 
it using inverse of bijective 
transformation 

This generative model gives 
good samples after 10-20 
transformations
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Bayesian evidence
• Hard example: 32-dimensional thin rotated banana
• A lot faster and more accurate than AIS or nested sampling
• 22s (our method) versus 30 min for dynesty (nested sampler)
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Summary
• In cosmology we have good generative models 

(simulations), but we need them to be fast and we 
need their gradient with respect to 106++ initial density 
parameters: FastPM trained on hydro sims

• Reconstruction of initial density is inverse problem: if 
we can solve it we can optimally extract cosmological 
information. We now have all the tools, we just need to 
scale it to the datasizes we have

• Similar generative model ideas can also be applied to 
Bayesian posterior and evidence calculations: potential 
for very large reduction in CPU relative to MCMC 
methods
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Future of supervised ML: generative 
learning

• Learn pq(x) from labeled data or simulations
• for different hypotheses q, use likelihood ratio to classify or 

regress
• Supervised ML is dominated by discriminative learning (for a 

good reason)

• Example: 30 dimensional 
Atlas Higgs data, background 
versus signal
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