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Galaxy Star-Forming Main Sequence

At high M, :
e Less spiral galaxies
* They seem to stop forming stars and
become elliptical
e Possible reasons for this quenching
can be (among others):
<> Major merger
<> AGN feedback
<> Ram pressure stripping
<> Gas depletion
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Very massive spiral galaxies

“Superspirals”
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Ogle+2016 and Ogle+2019a selected and
analyzed the most massive spiral galaxies
from SLOAN.

Selection criteria:
— Lg>8 L«
- z<0.3
— Visual spiral classification

— found 84 “superspirals” (8% of
populaton with Lz> 8L.)

Using 2MASX allows to enlarge the
sample, including dust-extincted, high-
inclination objects (Ogle+2019b).
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Main properties of superspirals

* SFR~1-100 M, yrt
 SFR on the SFMS: They are unquenched

2'0_—1 2<0.1 SFMS: Elbaz+07 ' ' o objects!
Mstars =11.8 :_ ° ) Py . . .
czue e * M., between 2x10!! (selection criterion)
1.5 e ]
,  Ogle+19 Super Spirals B o and 1012 MO
1.0¢ oy oxt S I Small bulges: <B/T>=0.17
osl 37 “.7 | ¢ Large size: Isophotal radii between 50 and
/./' ’ 140 kpc (mean disk scale length 12 kpc)
oor ol 1 « Colors are redder in inner regions of disk,
—0.5k /-/‘ ] indicating inside-out star formation
e Large fraction (41%) have indications of
| | ongoing (minor) merger (e.g.double nuclei)
' : e Situated in low and moderate density

-15=35 795 100 105 110 115 120
09 (Mstars) (Mo environment (72%) and outer regions of

clusters (28%).

from Ogle+2019b, adapted iral i
(from Ogle adapted) * The closest superspiral is at z=0.09



1 2 3 = ) 6 74 8
»
9 10 11 12 13 14 15 16
.
17 18 ) 20 21 22 23 24
»
25 26 27 28 29 30 31 32
-
33 34 35 36 37 38 39 40
>
-
41 42 43 44 45 46 47 48
.
49 50 51 52 53
40" 'x40




log My [M ]

Baryonic Tully-Fisher relation (BTFR)
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Hao rotation curves show a break in

the BTFR (Ogle et al. 2019b):

* High v, indicate a high M, ,,..

* There s a upper limitin M,

Possible reason:

* Large M,,,, inhibits gas cooling in
a dynamical time.

* Predicted critical halo mass is
log(M,,,,) > 12.7 (White & Rees
1978) is consistent with our
value.

e Superspirals can form stars only
from cold gas that cooled before
halos reached the critical limit.



Molecular gas in superspirals

We are observing a sample of superspirals in
CO with the IRAM 30m telescope (so far 25
objects, by the end hopefully 50-70).

Questions that we would like to answer:
 What is the amount of molecular gas in superspirals?
 How does star formation proceed at these high masses with respect to
the molecular gas?
* Are fast rotator common among superspirals? We can analyze this based
on the CO spectra.



IRAM CO observations

e Beam ~24” -> cover the entire galaxies
* Sample selected from Ogle+2019a and from 2MASX with similar selection criterions.
* Choose galaxies with SFR >~10 M, yr!

— Observed spectra have a high S/N (>5, many >10)

— Calculate M,,, with Galactic X-factor

— Measure W, which allows to calculate the rotation velocity
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Analysis

 Comparison sample: xCOLDGASS (Saintonge+2017)

— Close-by (z<0.03) sample of ~500 galaxies selected randomly from SDSS
with M, > 10° Mo

— CO observed with IRAM 30m

* For both sample we calculated SFR and M., from WISE data:

star

— SFR (M, yr?) = Ly; (L,) * 1098 (Chung et al. 2015)

— M., (M,)= Ly, x 0.6 (Ogle+2019b)
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Molecular gas and SF
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The depletion time, Ty, = M,;,/SFR, is
the same for superspirals and COLDGASS
galaxies

The good correlation between M,
and SFR is extended to high M, !



Molecular gas fraction of superspirals is the same as:

Molecular gas fraction
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— Superspirals are massive, unqguenched galaxies with a sufficiently large molecular gas content for
active star formation



Baryonic Tully-Fisher relation
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Fit to the CO spectra with a double Gaussian

derive W,
V,or = Weo/(2*sin(inclination))

For cases where CO is concentrated in the
inner part of the galaxies, v, is a lower
limit = conclusions about break in BTFR
are unaffected.
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Summary and conclusions

Superspirals are a rare population of the most massive spiral galaxies (between
~2x10* and 10!? M,) which are actively star forming, following the SFMS.

The relation between molecular gas, SFR and Mstar (ty.,, My,/M,,) are the same
as for lower mass galaxies

— There is abundant molecular gas to fuel SF and the process of SF is “normal”.
Superspirals

—  Superspirals are unquenched galaxies. Most likely they have been forming
stars actively at a moderate rate during all their life.

Kinematical data (from Ha rotation curves and CO line width) reveals a break in
the Baryonic Tully-Fisher relation:

— There is a upper limit in stellar mass in spiral galaxies.
— In massive halos baryonic mass is underrepresented.



Thank you for your attention



SFR and sSFR (=SFR/M..,.)
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Number of Galaxies

Properties of superspirals
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