The LEGA-C Spectroscopic Survey of z ~ I Galaxies

Gas Kinematics and Stellar Kinematics

Arjen van der Wel Max Planck Institute for Astronomy, Heidelberg

Outline

- Introduction & the LEGA-C survey
- Stellar populations at z~l
- Integrated gas vs. stellar dynamics
- Spatially resolved kinematics
- Dynamical modeling

- 90% of stars formed between z=3 and z=0
- 50% of stars formed between z=1 and z=0

- 90% of stars formed between z=3 and z=0
- 50% of stars formed between z=1 and z=0
- Most stars form in L* galaxies (5 x 10^{10} Msol) at all z<3
- SF-ing L* galaxies are disk-dominated at all z<3

- 90% of stars formed between z=3 and z=0
- 50% of stars formed between z=1 and z=0
- Most stars form in L* galaxies (5 x 10^{10} Msol) at all z<3
- SF-ing L* galaxies are disk-dominated at all z<3

Redshift	$Log(M^*)$
0.20 < z < 0.50	10.59 ± 0.09
0.50 < z < 0.75	10.65 ± 0.23
0.75 < z < 1.00	10.56 ± 0.13
1.00 < z < 1.25	10.44 ± 0.11
1.25 < z < 1.50	10.69 ± 0.12
1.50 < z < 2.00	10.59 ± 0.10
2.00 < z < 2.50	10.58 ± 0.18
2.50 < z < 3.00	10.61 ± 0.22

Tomczak et al. (2014)

z=1.5-2 L* SF-ing galaxies — CANDELS

- 90% of stars formed between z=3 and z=0
- 50% of stars formed between z=1 and z=0
- Most stars form in L* galaxies (4 x 10¹⁰ Msol) at all z<3
- SF-ing L* galaxies are disk-dominated at all z<3
- Many stars end up in kinematically `hot' systems

- 90% of stars formed between z=3 and z=0
- 50%
 The challenge is that we cannot connect
 high-redshift progenitors to
 low-redshift descendants

z<3

• Many stars end up in kinematically `hot' systems

LEGA-C: science drivers

- Star-formation histories of individual galaxies
- Growth of disk galaxies
- The path to passiveness (quenching)
- Maintaining passiveness
- Growth through merging

LEGA-C: science drivers

- Star-formation histories of individual galaxies
- Growth of disk galaxies
- The path to passiveness (quenching)
- Maintaining passiveness
- Growth through merging

Answers through high-quality spectroscopy of many distant galaxies:

- Stellar populations (star-formation histories)
- Stellar dynamics

LEGA-C: a VLT/VIMOS Public Survey

Large Early Galaxy Astrophysics Census (van der Wel et al. 2016)

- 128 night allocation
- December '14 Spring '18
- R = 3000, λ = 6000 9000 Å
- >3000 galaxies at 0.6 < z < 1.0
- 20h integrations; typical S/N=20/Å
- DRI in September 2016
- DR2 in September 2017

LEGA-C: a VLT/VIMOS Public Survey

The LEGA-C group at MPIA:

Ivana Barisic Priscilla Chauke Josha van Houdt **Caroline Straatman Arjen van der Wel (PI)** Po-Feng Wu

Eric Bell (Michigan) Rachel Bezanson (Princeton) Gabriel Brammer (STScI) Joao Calhau (Lancaster) Stephane Charlot (IA Paris) Marijn Franx (Leiden) Anna Gallazzi (Arcetri) Ivo Labbe (Leiden) Michael Maseda (Leiden) Juan Carlos Munoz (ESO) Adam Muzzin (York) Kai Noeske (Heilbronn planetarium) Camilla Pacifici (Goddard) Hans-Walter Rix (MPIA) **David Sobral (Lancaster)** Jesse van de Sande (Sydney) Ros Skelton (Capetown) Justin Spilker (Arizona) Pieter van Dokkum (Yale) Vivienne Wild (St. Andrews) Christian Wolf (ASU)

The current sample : 1550 galaxies

Spectral decomposition

Spectral decomposition

Outline

- Introduction & the LEGA-C survey
- Stellar populations at z~l
- Integrated gas vs. stellar dynamics
- Spatially resolved kinematics
- Dynamical modeling

Stellar Populations

SDSS: Kauffmann+03 LEGA-C:Wu, van der Wel et al., in prep.

Stellar Populations

SDSS: Kauffmann+03 LEGA-C:Wu, van der Wel et al., in prep.

Stellar Populations

Chauke, van der Wel et al., in prep.

Outline

- Introduction & the LEGA-C survey
- Stellar populations at z~l
- Integrated gas vs. stellar dynamics
- Spatially resolved kinematics
- Dynamical modeling

Faber-Jackson relations

Bezanson, van der Wel et al., in prep.

Faber-Jackson relations

Bezanson, van der Wel et al., in prep.

Faber-Jackson relations

Bezanson, van der Wel et al., in prep.

Bezanson, van der Wel et al., in prep.

Bezanson, van der Wel et al., in prep.

Bezanson, van der Wel et al., in prep.

Bezanson, van der Wel et al., in prep.

Outline

- Introduction & the LEGA-C survey
- Stellar populations at z~l
- Integrated gas vs. stellar dynamics
- Spatially resolved kinematics
- Dynamical modeling

z = 0.68Mstar = 4 x 10¹⁰ Msol SFR = 28 Msol/yr

z = 0.68 Mstar = 4 x 10¹⁰ Msol SFR = 28 Msol/yr

z = 0.68Mstar = 4 x 10¹⁰ Msol SFR = 28 Msol/yr

z = 0.66 Mstar = 1.3 x 10¹¹ Msol SFR = 6 Msol/yr

z = 0.75Mstar = 9 x 10¹⁰ Msol SFR = 6 Msol/yr

What do we do with it?

- Tully-Fisher relation of emission lines galaxies see next talk by Caroline Straatman
- Stellar rotation
 Bezanson, van der Wel et al., subm.
- Dynamical modeling van Houdt, van der Wel et al., in prep.

 V_5 / σ_0

Stellar rotation distribution

Bezanson, van der Wel et al.

Stellar rotation in massive, passive galaxies

Stellar rotation in massive, passive galaxies

Previous work: 25 z~1 ellipticals (van der Wel+08) 2 z~2 lensed galaxies (Newman+15;Toft+17)

Previous work: 25 z~1 ellipticals (van der Wel+08) 2 z~2 lensed galaxies (Newman+15;Toft+17)

Outline

- Introduction & the LEGA-C survey
- Stellar populations at z~l
- Integrated gas vs. stellar dynamics
- Spatially resolved kinematics
- Dynamical modeling

Dynamical modeling

Dynamical modeling

Dynamical modeling

Virial mass — k(n) R_{eff} σ^2/G — vs. stellar mass

Jeans mass vs. virial mass

Jeans mass (stellar component) vs. stellar mass

Takeaway points

- LEGA-C aims at characterizing the ages/kinematics of stars in $z\sim I$ galaxies
- Integrated gas velocity dispersions are not always a proxy for galaxy mass
- Passive galaxies at $z \sim l$ rotate faster than their present-day descendants
- We are beginning to dissect the radial distribution of stellar and dark matter