Modeling the ultraviolet emission from young galaxies at high redshift

Alba Vidal García Collaborators: Stéphane Charlot, Gustavo Bruzual, Ivan Hubeny

- Introduction
- Calibration of models for simple stellar populations
 - Importance of IMF sampling
- Modeling the interstellar medium
 - Approach
 - Results: revealing the cleanest tracers of the properties of the stars, emitting and absorbing gas
- Conclusions

- Introduction
- Calibration of models for simple stellar populations
 - Importance of IMF sampling
- Modeling the interstellar medium
 - Approach
 - Results
- Conclusions

Introduction: Example of spectrum of high-z galaxy

- Future telescopes (JWST, EELT, ...) will observe rest-frame **ultraviolet** and **optical** spectra of large samples of **distant galaxies**
- High-z galaxies rest-frame UV redshifted to the optical and IR
- FUV spectrum exhibits several **absorption** and **emission** features:

Photospheric and wind absorption → properties of stellar populations

Nebular emission —> properties of ionized gas

Interstellar absorption —> properties of ionized and neutral gas

Stacked spectrum of $z\sim3$ star-forming galaxies (Shapley et al. 2003) 4

Introduction: Modeling of different components of a galaxy

- Introduction
- Calibration of models for simple stellar populations
 - Importance of IMF sampling
- Modeling the interstellar medium
 - Approach
 - Results
- Conclusions

Calibration of SSP models: Approach

• To calibrate the new stellar models, use observations of nearby star clusters

Star clusters \approx SSPs

The Large Magellanic Cloud Credit: NOAO/AURA/NSF

• We can use ultraviolet observations of young star clusters in the Large Magellanic Cloud and compare the observed strengths of **stellar absorption** features with those predicted by the models

• 19 UV absorption-line indices (Fanelli et al. 1992)

Calibration of SSP models: Importance of IMF sampling

- Mass range of young clusters: $10^3-10^6 M_{\odot} \longrightarrow$ number of massive stars fluctuates around a few
- Particularly important in the UV (where single massive star can dominate cluster emission)
- For clusters of few $\times 1000 \text{ M}_{\odot}$: populate **IMF stochastically**

 $10^{3}M_{\odot}$,1Myr, Salpeter IMF

Smoothy sampled IMF Stochastically sampled IMF

Calibration of SSP models: Importance of stochastic IMF sampling: ultraviolet spectral indices

Calibration of SSP models: Comparison of the prediction of best-fit model and data

Difference between best-fit stochastic model and observed strengths (corrected for Milky Way absorption) for 19 UV absorption lines (in units of σ^{data})

 \rightarrow Best-fit model extracted from comprehensive library of SSPs encompassing full ranges of age, metallicity and mass

 \rightarrow Compare indices of large library of models (uniform sampling of age, metallicity and mass) with those of each observed cluster to derive Bayesian estimates of different parameters

Calibration of SSP models: Parameter estimates using stochastic vs. smooth IMF sampling

- Introduction
- Calibration of models for simple stellar populations
 - Importance of IMF sampling
- Modeling the interstellar medium
 - Approach
 - Results
- Conclusions

ISM modeling: Approach

Gutkin+2016: compute **emission** from HII regions with photoionization code *Cloudy*:

- Parametrize photoionized gas in terms of $S_{\lambda}(t')$, n_{H} , U_{S} , Z_{ISM} , ξ_{d} and C/O
- Two component dust model (Silva+1998, Charlot&Fall2000)

Stellar birth clouds	
$n_{ m H}$	Hydrogen number density
$U_{ m S}$	Zero-age ionization parameter ^{b}
$Z_{\scriptscriptstyle \mathrm{ISM}}$	Interstellar metallicity $[Z_{\text{\tiny ISM}} = Z(t)$ by default] ^c
ξ_d	Dust-to-metal mass ratio
C/O	Carbon-to-oxygen abundance ratio

Here: compute **emission** + **absorption** from ISM with code *Cloudspec* (photoionization code *Cloudy* + general spectrum synthesis code *Synspec*):

- Extend previous calculations to include contribution by HI envelopes of stellar birth (giant molecular) clouds (BC)
- Expand parametrization of photoionized gas (Charlot&Longhetti2001, Gutkin+2016)
- Include contribution by intercloud medium (ICM)

ISM modeling: Approach

ISM modeling: Examples: young metal-poor and old metal-rich galaxy

ISM modeling: Features tracing young stars

clusters

Strengths of 19 Fanelli et al. indices measured in the spectrum of maturegalaxy model:

- For most indices, inclusion of interstellar absorption deepens stellar features
- Indices least affected by ISM contamination
- For most indices, ISM contamination can affect index strength more than change in Z
- Otherwise, change in index strength induced by change in Z is smaller than typical observational error
- Among least ISM-sensitive, effect of metallicity is measurable and stronger than that of ISM contamination only for **Bl 1425** and **Bl 1719**

Most useful to trace stellar population properties

ISM modeling: Features tracing nebular emission (young metal poor galaxy model)

Emission component of young galaxy model Transmission function of the ISM for metal-poor galaxy model

ISM modeling: Applications: features tracing interstellar absorption

Emission component of young galaxy model Transmission function of the ISM for metal-poor galaxy model

- Introduction
- Calibration of models for simple stellar populations
 - Importance of IMF sampling
- Modeling the interstellar medium
 - Approach
 - Results
- Conclusions

Conclusions

In this work, I use a combination of state-of-the-art models for the production of stellar radiation and its transfer through ISM to investigate ultraviolet-line diagnostics of stars, ionized and neutral ISM in star-forming galaxies:

- 1) Assessed ability of new stellar population synthesis models to reproduce pure **stellar absorption features** in ultraviolet spectra of star clusters in the LMC
- 2) Developed **new approach** to model in a physically consistent way combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies
- 3) Used this approach to explore competing effects of **stellar absorption**, **nebular emission** and **interstellar absorption** in ultraviolet spectra of star-forming galaxies