

# Spatially resolved emission line maps: studying star-forming clumps at high-z



Anita Zanella

in collaboration with: E. Le Floc'h, E. Daddi, F. Bournaud et al.

18<sup>th</sup> September 2017 – KICC workshop

### How do high-z galaxies look like?



High-z galaxy:  $f_{gas} \sim 50\%$ 

### How do high-z galaxies look like?



Bournaud+15

### How do high-z galaxies look like?

#### How do clumps form?

Clumps lifetime?

#### Do clumps form the bulge?

Role of stellar feedback?

Clumps SFE?

# Key needed ingredients

Rest-frame optical imaging



Rest-frame UV imaging or spectroscopy (for young ages)



Spatially resolved probe of stellar mass distribution

star formation distribution

### **Our sample**

#### HST/WFC3: Slitless spectroscopy (18 orbits) Imaging: near-IR (F140W, F105W) UVIS (F606W)



Pointed at CL J1449+0856 cluster (Gobat+ 13)

### Exploring a new parameter space



- CANDELS-like surveys: broad-band photometry only cannot identify young clumps (age > 100 Myr)
  - 3DHST-like surveys:
     2 4 orbits slitless spectroscopy
     only anomalously bright clumps



- FRONTIER FIELDS dataset pointing at local clusters
- o HUDF dataset (18 orbits)

With our data set we can explore the young clumps regime

Velson+15

3D-HST Spectrum

# **Creating emission line maps**



#### spectrum



spectrum continuum contamination

# **Creating emission line maps**





# **Finding clumps**



Emission line map [OIII]









# **Modelling light profiles**



Emission line map [OIII]







#### Imaging



#### Emission line maps



### Age estimate for young clumps









**Close pairs selection through emission line maps** 







Old clumps: detected in continuum, but not in emission line maps



Intermediate-age clumps: continuum and emission lines detected





Contribution of emission lines in broad-band observations is important



Bona fide young clump ([])

# An extremely young clump





Age < 10 Myr

### Newly born clumps behave like ministarbursts



SFE > 10x SFE<sub>gal,MS</sub>

Zanella et al. 2015, Nature, 521, 54

# **Clumps formation rate**



6.0 6.5 7.0 7.5 8.0 8.5 9.0 log(age [yr])

# **Clumps lifetime**



$$LT = \frac{N_{cl/gal}}{CFR} \longrightarrow \# \text{ of clumps/galaxy with } M_{tot} \ge 2.5 \times 10^9 \text{ M}_{\odot}$$

 $LT \sim 500 \text{ Myr} \rightarrow \text{clumps likely survive stellar feedback}$ 

# Summary

 Simultaneously analyzing continuum and emission line maps allows us to:

detect **close pairs** and **gas-rich mergers** properly **age star-forming clumps** old clumps (**300 – 500 Myr**) close to center

#### • Young clumps:

at young ages have **starburst-like SFE**; likely live ~ 500 Myr: **survive feedback**; play a role in **bulge growth** 





### Backup



Gobat+13

| Filter       | Central wavelength<br>(µm) | Exposure<br>(s) | Instrument         | Telescope   | Observation date                                                                                       | References <sup>a</sup>  |
|--------------|----------------------------|-----------------|--------------------|-------------|--------------------------------------------------------------------------------------------------------|--------------------------|
| 0.5-10 keV   | -                          | 80000           | EPIC-MOS           | XMM-Newton  | 2001-2003                                                                                              | B05, G11                 |
| 0.5-8 keV    | -                          | 188000          | ACIS               | Chandra     | 2004 Jun, 7 $^{\mathrm{th}}$ -13 $^{\mathrm{th}}$ , 2014 May, 21 $^{\mathrm{st}}$                      | C09, G11, V16            |
| U            | 0.36                       | 14700           | FORS2              | VLT         | 2011 May, 3 <sup>rd</sup>                                                                              | S13                      |
| NB3640       | 0.36                       | 12890           | LRIS               | Keck        | 2014 Mar, $27^{\mathrm{th}}$                                                                           | V16                      |
| OII/4000+45  | 0.37                       | 28800           | FORS2              | VLT         | 2011 May, $3^{ m rd}$                                                                                  | Gobat in prep.           |
| V            | 0.55                       | 12130           | FORS2+LRIS         | VLT+Keck    | 2011 May, 3 $^{ m rd}$ , 2014 Mar, 27 $^{ m th}$                                                       | S13, V16                 |
| В            | 0.44                       | 1500            | Suprime-Cam        | Subaru      | 2003 Mar, 5 $^{ m th}$                                                                                 | K06                      |
| F606W        | 0.59                       | 1080            | WFC3               | HST         | 2013 May, 20 $^{ m th}$                                                                                | Z15                      |
| R            | 0.65                       | 3600            | Prime Focus Camera | WHT         | 1998 May, $19^{ m th}$ -21 $^{ m st}$                                                                  | D00                      |
| 1            | 0.80                       | 5400            | Suprime-Cam+LRIS   | Subaru+Keck | 2003 Mar, 5 $^{ m th}$ , 2014 Mar, 27 $^{ m th}$                                                       | K06                      |
| Ζ            | 0.91                       | 2610            | Suprime-Cam        | Subaru      | 2003 Mar, $4^{\mathrm{th}}$ -5 $^{\mathrm{th}}$                                                        | K06                      |
| Y            | 1.02                       | 17780           | MOIRCS             | Subaru      | 2009 Mar, 15 $^{\mathrm{th}}$ , 2010 Feb, 7 $^{\mathrm{th}}$ -8 $^{\mathrm{th}}$ , 21 $^{\mathrm{st}}$ | G11                      |
| F105W        | 1.06                       | 11880           | WFC3               | HST         | 2013 May, 20 $^{ m th}$                                                                                | Z15                      |
| J            | 1.26                       | 9360            | MOIRCS+ISAAC       | Subaru+VLT  | 2007 Mar, $10^{\mathrm{th}}$ , Apr $5^{\mathrm{th}}$                                                   | G11                      |
| F140W        | 1.40                       | 4320            | WFC3               | HST         | 2010 Jun, 6 $^{\mathrm{th}}$ , 26 $^{\mathrm{th}}$ , Jul, 1 $^{\mathrm{st}}$ 9 $^{\mathrm{th}}$        | G13, Z15                 |
| F160W        | 1.60                       | 17920           | NIC3               | HST         | 2008 May, $11^{\mathrm{th}}$                                                                           | G11                      |
| Н            | 1.65                       | 2380            | MOIRCS             | Subaru      | 2007 Apr, 8 <sup>th</sup>                                                                              | G11                      |
| K            | 2.15                       | 1890            | NIRC2              | Keck        | 2009 Apr, 4 <sup>th</sup>                                                                              | G11                      |
| $K_s$        | 2.20                       | 7800            | MOIRCS+ISAAC       | Subaru+VLT  | 2007 Mar, 8 $^{\mathrm{th}}$ , Apr, 5 $^{\mathrm{th}}$                                                 | G11                      |
| IRAC 1       | 3.6                        | 65640           | IRAC               | Spitzer     | 2004 Jul, 22 <sup>nd</sup> , 2011 Sep 8 <sup>th</sup> -9 <sup>th</sup> , 11 <sup>th</sup>              | G11, G13, S13            |
| IRAC 2       | 4.5                        | 65640           | IRAC               | Spitzer     | 2004 Jul, 22 <sup>nd</sup> , 2011 Sep 8 <sup>th</sup> -9 <sup>th</sup> , 11 <sup>th</sup>              | G11, G13, S13            |
| IRAC 3       | 5.8                        | 65640           | IRAC               | Spitzer     | 2004 Jul, 22 <sup>nd</sup> , 2011 Sep 8 <sup>th</sup> -9 <sup>th</sup> , 11 <sup>th</sup>              | G11, G13, S13            |
| IRAC 4       | 8.0                        | 65640           | IRAC               | Spitzer     | 2004 Jul, 22 <sup>nd</sup> , 2011 Sep 8 <sup>th</sup> -9 <sup>th</sup> , 11 <sup>th</sup>              | G11, G13, S13            |
| MIPS 24      | 24                         | 480             | MIPS               | Spitzer     | 2004 Aug, 5 <sup>th</sup>                                                                              | G11, G13, S13            |
| PACS Bands   | 100, 160                   | 63720           | PACS               | Herschel    | 2011 Jul, 19 <sup>th</sup> -20 <sup>th</sup>                                                           | Strazzullo in prep.      |
| SPIRE Bands  | 250, 350, 500              | 14400           | SPIRE              | Herschel    | 2013 Apr, 1 <sup>st</sup>                                                                              | Strazzullo in prep.      |
| 345 GHz      | 870                        | 108000          | LABOCA             | APEX        | 2011 Aug - Sep                                                                                         | Dannerbauer in prep.     |
| Band /       | 870                        | 14/28           | -                  | ALMA        | 2013 Jun - 2014 Dec                                                                                    | V16, Strazzullo in prep. |
| S            | $1.3 \times 10^{5}$        | /5600           | -                  |             | 2012 Feb - Nov                                                                                         | Coogan in prep.          |
|              | $2 \times 10^{5}$          | 57600           | -                  | e-MERLIN    | 2012 May                                                                                               | Betnermin in prep.       |
| 325 MHZ      | $9.2 \times 10^{3}$        | 14400           | -                  | GMRT        | 2013 Jan - May                                                                                         | Sargent in prep.         |
| GRIS-300V+10 | 0.45-0.87                  | 36000           | FORS2              | VLT         | 2008 Apr - Jul                                                                                         | G11                      |
| GRIS-300V+10 | 0.45-0.87                  | 41400           | FORS2              | VLT         | 2012 Apr, 16 <sup>th</sup> -17 <sup>th</sup>                                                           | Gobat in prep.           |
| LR-BLUE      | 0.37-0.67                  | 9000            | VIMOS              | VLT         | 2004 Mar, 29 <sup>th</sup>                                                                             | G11                      |
| Optical      | 0.47-0.93                  | 5400            | MUSE               | VLT         | 2015 Jun, 20 <sup>th</sup>                                                                             | Valentino in prep.       |
| HK500        | 1.30-2.30                  | 50400           | MOIRCS             | Subaru      | 2013 Apr, $7^{\mathrm{th}}$ -9 $^{\mathrm{th}}$                                                        | V15                      |
| K            | 1.93-2.46                  | 73800           | KMOS               | VLT         | 2015 Apr - 2016 Mar                                                                                    | Valentino in prep.       |
| G141         | 1.40                       | 44640           | WFC3               | HST         | 2010 Jun, 6 $^{\mathrm{th}}$ , 26 $^{\mathrm{th}}$ , Jul, 1 $^{\mathrm{st}}$ 9 $^{\mathrm{th}}$        | G13, Z15                 |
| Band 3       | CO(3-2)                    | 13794           | -                  | ALMA        | 2014 May - 2015 June                                                                                   | Strazzullo in prep.      |
| Band 4       | CO(4-3)                    | 13819           | -                  | ALMA        | 2016 Apr - May                                                                                         | (Ongoing reduction)      |
| Ka           | CO(1-0)                    | 75600           | -                  | JVLA        | 2012 Feb - Mar                                                                                         | Coogan in prep.          |

Table 1. Photometric and spectroscopic coverage of CL J1449+0856.

<sup>a</sup>References: D00: Daddi et al. 2000; B05: Brusa et al. 2005; K06: Kong et al. 2006; C09: Campisi et al. 2009; G11: Gobat et al. 2011; G13: Gobat et al. 2013; S13: Strazzullo et al. 2013; V15: Valentino et al. 2015; Z15: Zanella et al. 2015; V16: Valentino et al. 2016.

### **Emission line maps creation**

- 1. Background subtraction (SExtractor)
- 2. Continuum + contamination subtraction (renormalization of each aXe model)
- 3. Cross correlation as a function of the shift along dispersion direction (redshift)
- 4. Uncertainties on cross-correlation: error propagation on the fit parameters
- 5. Weighted image combination (WDRIZZLE)
- 6. Computation of the average redshift of the combined map (and uncertainty obtained propagating the error on the cross-correlation)
- 7. Quantify effects of distorsions (wavelength calibration, astrometric calibration of the input image, misalignment in the cross-dispersion direction)
- 8. To estimate the average distorsion affecting the maps (= accuracy of the procedure) we forced the chi square to 1

$$\chi_{\rm red}^{2} = \frac{1}{N} \Sigma_{i=0}^{N} \frac{(D_{\rm i} - D_{\rm aver})^{2}}{\epsilon_{\rm z,i}^{2} + \epsilon_{\rm z,aver}^{2} + \sigma_{\rm D}^{2}}$$

with:  $D_i = z_{map,i,j} - z_{aver,i}$   $D_{aver} = average D_i$  over the whole sample of galaxies for the j-th orientation Distorsions < 0.06"

### **Emission line maps creation**

9. Check for the alignment when multiple clumps are present

- 10. Bestfit model allowed to rigidly shift to correct further small misalignments
- 11. Check obtained redshifts with MOIRCS redshifts

### Completeness

![](_page_35_Figure_1.jpeg)

# Vyc1

![](_page_37_Figure_0.jpeg)

# Vyc1 is point-like

![](_page_38_Figure_1.jpeg)

### Image ratios and mass map

#### Proxy dust reddening

![](_page_39_Figure_2.jpeg)

#### Proxy M/L ratio

![](_page_39_Figure_4.jpeg)

#### Stellar mass map

![](_page_39_Figure_6.jpeg)

# **Galfit decomposition**

![](_page_40_Figure_1.jpeg)

Direct image **F140W** 

[OIII] emisison line map

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

|                                                                                                      | Galaxy                        | Clump          |
|------------------------------------------------------------------------------------------------------|-------------------------------|----------------|
| $\mathbf{R}_{\mathbf{e}}$ [kpc]                                                                      | $2.8 \pm 0.4^a$               | < 0.5          |
| $\mathbf{SFR}  [\mathrm{M}_{\odot}/\mathrm{yr}]$                                                     | $77\pm9$                      | $32 \pm 6$     |
| $\log({ m M_{\star}/M_{\odot}})$                                                                     | $10.3\substack{+0.2 \\ -0.3}$ | $\lesssim 8.5$ |
| $\log({ m M}_{ m gas}/{ m M}_{\odot})$                                                               | $10.7\pm0.2^b$                | $\lesssim 9.4$ |
| $\mathbf{Z}  [\mathrm{Z}_{\odot}]$                                                                   | $0.6 \pm 0.2$                 | $0.4 \pm 0.2$  |
| $\mathbf{F_{[OIII]}^{obs}} \ [10^{-17} \mathrm{erg  s^{-1} cm^{-2}}]$                                | $10.4\pm0.7$                  | $4.3\pm0.2$    |
| $\mathbf{F}_{\mathbf{H}\beta}^{\mathbf{obs}} [10^{-17} \mathrm{erg  s^{-1} cm^{-2}}]$                | $1.5\pm0.8$                   | $0.9\pm0.3$    |
| $\mathbf{F}_{[\mathbf{OII}]}^{\mathbf{obs}} [10^{-17} \mathrm{erg  s^{-1} cm^{-2}}]$                 | $6.5 \pm 1.7$                 | $1.9\pm0.6$    |
| $\mathbf{F_{F140W}^{obs}}$ [10 <sup>-20</sup> erg s <sup>-1</sup> cm <sup>-2</sup> Å <sup>-1</sup> ] | $67.5 \pm 3.4^{c}$            | < 1.1          |
| $\mathbf{F_{F105W}^{obs}} [10^{-20} \mathrm{erg  s^{-1} cm^{-2}  \AA^{-1}}]$                         | $89.2 \pm 4.6^c$              | < 1.8          |
| $\mathbf{F_{F606W}^{obs}} [10^{-20} \mathrm{erg  s^{-1} cm^{-2}  \AA^{-1}}]$                         | $212.3\pm10.6^c$              | < 4.5          |

| Instrument    | Date                                              | Time                | Time           |
|---------------|---------------------------------------------------|---------------------|----------------|
|               |                                                   | (direct imaging)    | (spectroscopy) |
|               |                                                   | (hr)                | (hr)           |
| HST/WFC3      | 2010, $6^{\text{th}}$ June                        | 0.3 (F140W)         | 2.7            |
| HST/WFC3      | 2010, $25^{\text{th}}$ June, $1^{\text{st}}$ July | $0.6 \; (F140W)$    | 7              |
| HST/WFC3      | $2010, 9^{\mathrm{th}}$ July                      | $0.3 \; (F140W)$    | 2.7            |
| HST/WFC3      | $2013, 20^{\text{th}} \text{ May}$                | $3.3 \; (F105W)$    | -              |
| HST/WFC3      | $2013, 20^{\text{th}} \text{ May}$                | $0.3 ~({ m F606W})$ | -              |
| Subaru/MOIRCS | 2013, 7 <sup>th</sup> - 9 <sup>th</sup> April     | -                   | 7.3            |

# Mass estimate of Vyc1

 $M_{\rm J} \sim rac{\sigma^4 R_{\rm d}^2}{M_{\rm d}}$ 

 $M_{gas,clump} =$ 

 $\underline{\mathrm{SFR}}_{\underline{\mathrm{clump}}}\cdot \mathrm{M}_{\star,\mathrm{lit}}$ 

SFR<sub>lit</sub>

**Stellar mass** estimate:  $M_{\star} \leq 3 \times 10^8 M_{\odot}$ 

- 1) Average M/L ratio of host galaxy
- 2) M/L ratio at young ages from simulations
- 3) Simulations (normalizing to observed  $H\beta$ )

![](_page_45_Figure_5.jpeg)

M<sub>gas,young</sub>

SFR<sub>young</sub>

#### **Gas mass** estimate: $M_{gas} < 2.5 \times 10^9 M_{\odot}$

- 1) Jeans mass
- 2) Simulations (normalizing to obs H $\beta$ )
- 3) Comparison with older clumps using our simulations to relate properties at peak and later phases

# Do massive clumps exist?

Masses of observed giant clumps are overestimated due to blending caused by insufficient resolution?

For our young clump:

Stellar mass:  $M_{\star} \leq 3 \times 10^8 M_{\odot}$ 

from M/L ratio and simulations

**Gas mass** estimate:  $M_{gas} \le 2.5 \times 10^9 M_{\odot}$ from Jeans mass  $\longrightarrow M_J \sim \frac{\sigma^4 R_d^2}{M_d}$ and simulations

![](_page_46_Figure_6.jpeg)

Tamburello+ 14

# Could the clump mass be much lower?

![](_page_47_Figure_1.jpeg)

# Clumps drive high SFE and CO excitation

![](_page_48_Figure_1.jpeg)

α<sub>CO</sub> clump < α<sub>CO</sub> host galaxy: consistent with **clumps starburst-like behaviour** 

→ clumps have shorter gas depletion timescales than their host

Observations:

clumps have higher CO excitation than the host (Daddi+15)

![](_page_48_Picture_6.jpeg)

# Where do young clumps form?

Offset observed clump =  $1.6 \pm 0.3$  kpc

Estimate of galaxy inclination clump PA

 $\rightarrow$  Deprojected distance

Deprojected distance from the galaxy nucleus:

- Observed clump:  $3.6 \le d \le 6.2$  kpc 1)
- Our simulations:  $2.1 \le d \le 7.0$  kpc 2)
- Other simulations:  $2.0 \le d \le 10.0$  kpc 3) (e.g., Mandelker+14, Genel+12, Hopkins+12)

![](_page_49_Figure_8.jpeg)

1.5

# **Our simulations**

![](_page_50_Figure_1.jpeg)

![](_page_50_Figure_2.jpeg)

AMR code RAMSES (Teyssier 2002)

Resolution: 3.5 pc

Feedback from young stars:

- $\circ$  photo-ionization
- o radiation pressure
- o supernova explosions

Gas fraction: 50%

Bulge/Disk: 30%

1% of gas is converted into stars per free fall time

![](_page_51_Figure_0.jpeg)

![](_page_51_Figure_1.jpeg)

#### AGN hypothesis

X rays: no XMM and Chandra detection IR, RADIO: no detection BPT: in the SF region  $EW_{[OIII]} > 1700 \text{ Å}$ 

• Shock hypothesis

 $L_{[OIII]} \sim 50 - 500x$  brighter than shock ionization from wind outflows

![](_page_52_Figure_0.jpeg)

#### AGN hypothesis

X rays: no XMM and Chandra detection IR, RADIO: no detection BPT: in the SF region  $EW_{[OIII]} > 1700 \text{ Å}$ 

• Shock hypothesis

 $L_{[OIII]} \sim 50 - 500x$  brighter than shock ionization from wind outflows

#### • Merger hypothesis

Asymmetry– M<sub>20</sub> diagnostics No detected continuum

### Simulations

![](_page_53_Figure_1.jpeg)

Bournaud+14

### Giant clumps: simulations

![](_page_54_Figure_1.jpeg)

 $log(\Sigma)$ 0 2.5

Long-lived clumps (~ 500 Myr)

Inward migration  $\rightarrow$  bulge formation (Dekel+11, Bournaud+14, Mandelker+15)

Strong feedback  $\rightarrow$  disruption (Genel+12, Murray+10, Oklopcic+16)

Short-lived clumps (~ 50 Myr)

![](_page_55_Picture_0.jpeg)

Emission line maps allow to identify very gas rich mergers

![](_page_56_Figure_0.jpeg)

![](_page_57_Figure_0.jpeg)

Zanella et al. 2016, in prep.

![](_page_58_Figure_0.jpeg)

![](_page_59_Figure_0.jpeg)