skip to content

Kavli Institute for Cosmology, Cambridge

 

Fri 28 Jun 11:30: Title to be confirmed

Upcoming Talks - Wed, 31/01/2024 - 16:38
Title to be confirmed

Abstract not available

Add to your calendar or Include in your list

Mon 18 Mar 13:00: Title to be confirmed

Upcoming Talks - Wed, 31/01/2024 - 15:00
Title to be confirmed

Abstract not available

Add to your calendar or Include in your list

Mon 19 Feb 14:00: Title to be confirmed

Upcoming Talks - Wed, 31/01/2024 - 14:27
Title to be confirmed

TBD

Add to your calendar or Include in your list

Fri 19 Apr 11:30: Title to be confirmed

Upcoming Talks - Wed, 31/01/2024 - 12:24
Title to be confirmed

Abstract not available

Add to your calendar or Include in your list

Fri 12 Apr 11:30: Title to be confirmed

Upcoming Talks - Wed, 31/01/2024 - 12:23
Title to be confirmed

Abstract not available

Add to your calendar or Include in your list

Mon 05 Feb 14:00: Dynamo action, magnetorotational instability, Alfvén waves: Theory and experiments on astrophysical magnetohydrodynamics

Upcoming Talks - Tue, 30/01/2024 - 13:52
Dynamo action, magnetorotational instability, Alfvén waves: Theory and experiments on astrophysical magnetohydrodynamics

The homogeneous dynamo effect in moving electrically conducting fluids, such as liquid metals or plasmas, is responsible for magnetic-field generation in planets, stars and galaxies. Magnetic fields, in turn, can promote cosmic structure formation by destabilizing, via the magnetorotational instability (MRI), rotational flows in accretion disks that otherwise would be hydrodynamically stable.

For a long time, those topics have been the subject of purely theoretical and numerical research. This situation changed in 1999 when the threshold of magnetic-field self-excitation was crossed in two large-scale liquid-sodium experiments in Riga and Karlsruhe. Later, the VKS dynamo experiment in Cadarache successfully reproduced field reversals and excursions that are of great geophysical interest. Various types of the MRI were studied in liquid metal experiments at the Princeton Plasma Physics Laboratory and at Helmholtz-Zentrum Dresden-Rossendorf (HZDR). A liquid-rubidium experiment at the Dresden High Magnetic Field Laboratory (HLD) reached the “magic point” of coinciding Alfvén and sound speeds, which is thought to play a key role for the heating of the solar corona.

After a short introduction to the basic equations of magnetohydrodynamics, the lecture gives an overview about previous and future liquid metal experiments on dynamo action, Alfvén waves, and magnetically triggered flow instabilities such as the MRI . Special focus lies on a precession driven dynamo experiment that is presently being constructed in frame of the DRESDYN project at HZDR . Closely related to this, some emphasis is placed on the potential role of various astronomical forcings in triggering reversals of the geodynamo or even synchronizing the solar dynamo.

Add to your calendar or Include in your list

Fri 02 Feb 13:00: Towards reconciling Cosmology, GR and QFT through non-perturbative Stochastic Inflation

Upcoming Talks - Tue, 30/01/2024 - 11:21
Towards reconciling Cosmology, GR and QFT through non-perturbative Stochastic Inflation

In the context of inflation, we show how to account for quantum modes in general and numerical relativity on scales bigger than the Hubble radius, from where they behave classically and can grow non-perturbatively.

We provide a formulation of Stochastic Inflation in full general relativity that goes beyond the slow-roll and separate universe approximations. Starting from the initial conditions problem in numerical relativity, we show how gauge invariant Langevin source terms can be obtained for the complete set of Einstein equations in their ADM formulation by providing a recipe for coarse-graining the spacetime in any small gauge. These stochastic source terms are defined in terms of the only dynamical scalar degree of freedom in single-field inflation and all depend simply on the first two time derivatives of the coarse-graining window function, on the gauge-invariant mode functions that satisfy the Mukhanov-Sasaki evolution equation, and on the slow-roll parameters.

We validate the efficacy of these Langevin dynamics directly using an example in uniform field gauge, obtaining the stochastic e-fold number without the need for a first-passage-time analysis. As well as investigating the most commonly used gauges in cosmological perturbation theory, we also derive stochastic source terms for the coarse-grained first-order BSSN formulation of Einstein’s equations, which enables a well-posed implementation for 3+1 numerical relativity simulations.

Based on https://arxiv.org/abs/2401.08530v1

Add to your calendar or Include in your list

Tue 06 Feb 13:00: Photoevaporation from Exoplanet Atmospheres: Understanding the Role of Stellar Winds and Considering Water-rich Atmospheres Room changed

Upcoming Talks - Tue, 30/01/2024 - 10:54
Photoevaporation from Exoplanet Atmospheres: Understanding the Role of Stellar Winds and Considering Water-rich Atmospheres

The atmospheres of close-in exoplanets are extremely vulnerable to the effects of stellar UV to X-ray radiation. Photoevaporation can significantly alter planetary atmospheres or even strip them entirely, potentially rendering a planet uninhabitable. Understanding how these atmospheres evolve, persist, or fade away remains a fundamental challenge. In this talk, I will discuss two distinct but interconnected areas of photoevaporative research.

Firstly, I will discuss the interaction between the stellar wind and photoevaporating atmospheres. I will present 3D magnetohydrodynamic simulations of the interaction between the stellar wind and the photoevaporating outflow of a planet orbiting an M dwarf. This analysis reveals a diverse range of magnetosphere morphologies and plasma distributions due to the wind-outflow interaction. I consider how these changing morphologies might impact observable hydrogen Lyman-alpha signatures during planetary transits.

In the second part, I will delve into our current understanding of photoevaporation from water-rich atmospheres. Conventional analytic approaches often oversimplify the process, assuming two scenarios: the escape of only lighter hydrogen, or the dragging of oxygen along with escaping hydrogen. These two scenarios lead to two end cases: a planet that has retained its water-rich atmosphere or a planet which has lost its atmosphere, becoming dry and desiccated. I will challenge these oversimplifications by presenting results from a novel 1D multifluid hydrodynamic model of photoevaporation from a water-rich atmosphere, which shows oxygen escape should no longer be described by a simple on/off switch but instead requires careful modelling.

Room changed

Add to your calendar or Include in your list

Galaxy smash-ups may explain strange light from early universe

Cosmology Papers - Tue, 30/01/2024 - 10:42

Light from hydrogen in the early universe has baffled astronomers, but researchers have spotted interacting galaxies that could explain how it makes its way to us

Tue 06 Feb 13:00: Photoevaporation from Exoplanet Atmospheres: Understanding the Role of Stellar Winds and Considering Water-rich Atmospheres

Upcoming Talks - Mon, 29/01/2024 - 11:37
Photoevaporation from Exoplanet Atmospheres: Understanding the Role of Stellar Winds and Considering Water-rich Atmospheres

The atmospheres of close-in exoplanets are extremely vulnerable to the effects of stellar UV to X-ray radiation. Photoevaporation can significantly alter planetary atmospheres or even strip them entirely, potentially rendering a planet uninhabitable. Understanding how these atmospheres evolve, persist, or fade away remains a fundamental challenge. In this talk, I will discuss two distinct but interconnected areas of photoevaporative research.

Firstly, I will discuss the interaction between the stellar wind and photoevaporating atmospheres. I will present 3D magnetohydrodynamic simulations of the interaction between the stellar wind and the photoevaporating outflow of a planet orbiting an M dwarf. This analysis reveals a diverse range of magnetosphere morphologies and plasma distributions due to the wind-outflow interaction. I consider how these changing morphologies might impact observable hydrogen Lyman-alpha signatures during planetary transits.

In the second part, I will delve into our current understanding of photoevaporation from water-rich atmospheres. Conventional analytic approaches often oversimplify the process, assuming two scenarios: the escape of only lighter hydrogen, or the dragging of oxygen along with escaping hydrogen. These two scenarios lead to two end cases: a planet that has retained its water-rich atmosphere or a planet which has lost its atmosphere, becoming dry and desiccated. I will challenge these oversimplifications by presenting results from a novel 1D multifluid hydrodynamic model of photoevaporation from a water-rich atmosphere, which shows oxygen escape should no longer be described by a simple on/off switch but instead requires careful modelling.

Add to your calendar or Include in your list

Fri 17 May 11:30: Title to be confirmed

Upcoming Talks - Mon, 29/01/2024 - 09:56
Title to be confirmed

Abstract not available

Add to your calendar or Include in your list