When a Black Hole Fails to do its Job

Carter Rhea, PhD Student in Astrophysics
Département de physique, Université de Montréal
Supervised by Professor Julie Hlavacek-Larrondo

Evidence of Runaway Gas Cooling in the Absence of Supermassive Black Hole Feedback at the Epoch of Cluster Formation
Arxiv: 2007.15660

Press Release:
Blog:
https://chandra.harvard.edu/blog/node/766
Galaxy Clusters

★ Cluster Mass Distribution
 ○ Dark Matter - 84%
 ○ Intra-cluster Medium - 13%
 ○ Galaxies - 3%

★ Intra-Cluster Medium
 ○ Hot Ionized Gas
 ○ 10,000,000-100,000,000 K

★ Cooling Flow
 ○ Collapse of X-ray Emitting Gas
 ○ Flows toward center
 ○ Expected Increase in Stellar Formation

★ Galaxy Cluster
 ○ 100’s-1000’s of Galaxies
 ○ 10^{14}-10^{15} M☉
High Redshift Galaxy Clusters

Recent High-z Cluster Surveys
- South Pole Telescope
- Spitzer Adaptation of the Red-Sequence Cluster Survey

Galaxy Formation History

Behroozi, P.S., Wechsler, R.H., Conroy, C.
A View from the Optical/Infrared

- Hubble Space Telescope:
 - F160W ~ 9000s
 - F105W ~ 8500s
- Spitzer Space Telescope:
 - 24, 70, 160 micron
Potential Explanations for High Stellar Formation Rate

Gas-Rich Galaxy Merger

Gas-Wet Merger? No

A Radio View

X-rays with Chandra

- 170 ks of Chandra Observations (50 hrs)
- Compact Morphology
- Coefficient of Surface Brightness indicates strong Cool Core (~0.19)

Chandra X-ray Observatory
An Uninhibited Cooling Flow
Conclusions

Carter Rhea, PhD Student in Astrophysics
Département de physique, Université de Montréal
Supervised by Professor Julie Hlavacek-Larrondo
carterrhea@astro.umontreal.ca

Evidence of Runaway Gas Cooling in the Absence of Supermassive Black Hole Feedback at the Epoch of Cluster Formation
Arxiv: 2007.15660

Machine Learning Approach to Integral Field Unit Spectroscopy Observations: I. HII Region Kinematics
Arxiv: 2008.08093

A Novel Machine Learning Approach to Disentangle Multi-Temperature Regions in Galaxy Clusters
Arxiv: 2009.00643