
Submitted by Matthew Bothwell on Wed, 25/06/2025 - 15:21
The Vera C Rubin Observatory, a new scientific facility that will bring the night sky to life like never before using the largest camera ever built, has revealed its ‘first look’ images at the start of its 10-year survey of the cosmos.
The Rubin Observatory, jointly funded by the US National Science Foundation and the US Department of Energy’s Office of Science, has released its first imagery, showing cosmic phenomena at an unprecedented scale.
In just over 10 hours of test observations, the NSF-DOE Rubin Observatory has already captured millions of galaxies and Milky Way stars and thousands of asteroids. The imagery is a small preview of the Rubin Observatory’s upcoming 10-year scientific mission to explore and understand some of the universe's biggest mysteries.
Located on a mountaintop in Chile, the Rubin Observatory will repeatedly scan the sky for 10 years and create an ultra-wide, ultra-high-definition time-lapse record of our universe. The region in central Chile is favoured for astronomical observations because of its dry air and dark skies, and allows for an ideal view of the Milky Way’s centre.
The facility is set to achieve ‘first light,’ or make the first scientific observations of the Southern Hemisphere’s sky using its 8.4-meter Simonyi Survey Telescope, on 4 July.
UK astronomers, including from the University of Cambridge, are celebrating their role in the most ambitious sky survey to date.
“We will be looking at the universe in a way that we have never done before, and this exploration is bound to throw up surprises that we never imagined,” said Professor Hiranya Peiris from Cambridge’s Kavli Institute for Cosmology, Institute of Astronomy, and a builder of the Legacy Survey of Space and Time (LSST) Dark Energy Science Collaboration.
Enabled by an investment of £23 million from the Science and Technology Facilities Council (STFC), UK astronomers and software developers have been preparing the hardware and software needed to analyse the petabytes of data that the survey will produce to enable groundbreaking science that will enhance our understanding of the universe.
The UK is the second largest international contributor to the multinational project, putting UK astronomers at the forefront when it comes to exploiting this unique window on the Universe.
The UK is also playing a significant role in the management and processing of the unprecedented amounts of data. The UK will host one of three international data facilities and process around 1.5 million images, capturing around 10 billion stars and galaxies. When complete, the full 10-year survey is expected to rack up 500 petabytes of date – the same storage as half-a-million 4K Hollywood movies.
The UK’s science portal for the international community is capable of connecting around 1,500 astronomers with UK Digital Research Infrastructure to support the exploitation of this uniquely rich and detailed view of the Universe.
More than two decades in the making, Rubin is the first of its kind: its mirror design, camera size and sensitivity, telescope speed, and computing infrastructure are each in an entirely new category. Over the next 10 years, Rubin will perform the Legacy Survey of Space and Time (LSST) using the LSST Camera and the Simonyi Survey Telescope.
By repeatedly scanning the sky for 10 years, the observatory will deliver a treasure trove of discoveries: asteroids and comets, pulsating stars, and supernova explosions. Science operations are expected to start towards the end of 2025.
"I can’t wait to explore the first LSST catalogues - revealing the faintest dwarf galaxies and stellar streams swarming through the Milky Way’s halo," said Professor Vasily Belokurov from Cambridge's Institute of Astronomy, member of LSST:UK. "A new era of galactic archaeology is beginning!”
“UK researchers have been contributing to the scientific and technical preparation for the Rubin LSST for more than ten years,” said Professor Bob Mann from the University of Edinburgh, LSST:UK Project Leader. “These exciting first look images show that everything is working well and reassure us that we have a decade’s worth of wonderful data coming our way, with which UK astronomers will do great science.”
Hiranya Peiris is a Fellow of Murray Edwards College, Cambridge.