INCIDENCE, SCALING RELATIONS AND PHYSICAL CONDITIONS OF IONISED GAS OUTFLOWS IN MANGA

(submitted to MNRAS).

*c.r.avery@bath.ac.uk
MaNGA DR15

- Well-defined population of typical galaxies
- Allows removing large-scale velocity field
- Allows identifying low-luminosity AGN

~4,800 datacubes; ⟨z⟩ ~ 0.03; θ ~ 2.5”; 3700Å - 10000Å at R~2000

- Regulator of galaxy growth
- Which galaxies feature winds?
- How does outflow strength scale with galaxy properties?
- Physical conditions of outflowing material?

Law+2016, Wake+2017

c.r.avery@bath.ac.uk

Epoch of Galaxy Quenching 2020
Stack within elliptical apertures

Remove large-scale velocity field

Continuum subtraction w/ PPXF (Cappellari+2017)

Simultaneous double-Gaussian fitting

Statistically preferred over single-Gaussian?

\[300 \text{ galaxies w/ outflows (173 AGN)} \]
SPATIAL EXTENT
CENTRALLY CONCENTRATED

- Stack within elliptical annuli
- Remove large-scale velocity field
- Continuum subtraction w/ PPXF (Cappellari+2013)
- Simultaneous double-Gaussian fitting
- Statistically preferred over single-Gaussian?
- Determine the radius containing 90% of the broad component flux

see also, e.g., Roberts-Borsani+20

c.r.avery@bath.ac.uk
OUTFLOW INCIDENCE

- More common at high mass and density
- More common at higher SFR (Σ_{SFR}) and/or L_{AGN}
- Weak inclination dependence \rightarrow wide opening angles?

All outflows
SF outflows
AGN outflows

Underlying galaxy population

c.r.avery@bath.ac.uk

Epoch of Galaxy Quenching 2020
Correlations Between Outflow and Host Properties

Table:

<table>
<thead>
<tr>
<th></th>
<th>Full outflow sample</th>
<th>Disks</th>
<th>AGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>-0.06</td>
<td>0.42</td>
<td>0.10</td>
</tr>
<tr>
<td>η_{dust corr}</td>
<td>0.22</td>
<td>0.41</td>
<td>0.01</td>
</tr>
<tr>
<td>M_{out}</td>
<td>0.39</td>
<td>0.19</td>
<td>0.64</td>
</tr>
<tr>
<td>σ_{broad}</td>
<td>0.25</td>
<td>-0.31</td>
<td>0.34</td>
</tr>
<tr>
<td>ΔV_{broad}</td>
<td>0.21</td>
<td>0.21</td>
<td>0.06</td>
</tr>
<tr>
<td>V_{out}</td>
<td>0.13</td>
<td>-0.33</td>
<td>0.27</td>
</tr>
<tr>
<td>[OIII] BNR</td>
<td>0.50</td>
<td>0.19</td>
<td>0.36</td>
</tr>
<tr>
<td>Hα BNR</td>
<td>0.33</td>
<td>0.56</td>
<td>0.28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Disks</th>
<th>AGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sSFR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ_{SFR}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ*_{e}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_*/R_e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{R_e}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{rot}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_0.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>incl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_{AGN}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_{Edd}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- η: mass-loading factor
- Μ_{out}: mass outflow rate
- BNR = broad-to-narrow line ratio

Figure:

- Spearman's Rank
- Epoch of Galaxy Quenching 2020

Contact:
c.r.avery@bath.ac.uk
VARIATIONS ACROSS SFR – M_*

Colour-coding based on locally weighted regression (LOESS, Cappellari+2013)

also, e.g., Arribas+14, Cicone+16, Rupke18, Fluetsch+19, Veilleux+20

c.r.avery@bath.ac.uk
Strong dependence on stellar velocity dispersion

$\sigma_\star(<R_e)$

\sim gravitational potential well

$\sim M_{BH}$

see also Rupke+17, Fluetsch+19 & Asa Bluck’s talk (Bluck+20)

c.r.avery@bath.ac.uk

Epoch of Galaxy Quenching 2020
Galactic winds over 4 dex in \(L_{\text{AGN}} \), down to modest accretion rates

Enhanced incidence at higher \(\lambda_{\text{Edd}} \)
and/or \(L_{\text{AGN}} \)

Also, e.g., Rupke & Veilleux+11, Cicone+14, Fiore+17, Harrison+18, Fluetsch+19, Lutz+20, Wylezalek+20

\[
M_{\text{out}} \propto L_{\text{AGN}}^{0.51}
\]
SF and AGN outflows jointly described by a unified scaling relation

$$\log(\dot{M}_{\text{out}}) = b \log \left(\frac{M_*}{5 \times 10^{10} \, M_\odot} \right) + c \log \left(\frac{\sigma R_e}{100 \, \text{km s}^{-1}} \right) + d \log \left(\frac{\text{SFR}}{3 \, M_\odot \, \text{yr}^{-1}} \right) + e \log \left(\frac{L_{\text{AGN}}}{1 \times 10^{43} \, \text{erg s}^{-1}} \right)^f$$

Fit with emcee (Foreman-Mackey+13)

see also Fluetsch+19
PHYSICAL CONDITIONS

Broad components feature...
Higher excitation \rightarrow shocks

(see also Ho+14).

(see also Perna+19, Villar Martín+14, Rodríguez Del Pino +19)

c.r.avery@bath.ac.uk

Epoch of Galaxy Quenching 2020
CONCLUSIONS

• Minor fraction of MaNGA galaxies (~ 10% of line-emitting objects) exhibit ionised winds

• Star formation and AGN are both important drivers of galactic winds in galaxies with moderate AGN activity

• A tight scaling relation (0.28 dex scatter) parameterises the mass outflow rate of SF & AGN galaxies as a function of its drivers (SFR, L_{AGN}) and the galaxy’s potential well depth (M_{star}, but most notably $\sigma_1^* \text{Re}$)

• Outflow rates may be enhanced once accounting for additional attenuation to the ionised gas by dust entrained in the wind

• Feedback in typical nearby galaxies comes mostly in the form of galactic fountains → only 25% have $v_{\text{out}} > v_{\text{esc}}$, among them both SF and AGN outflows → fraction of escaping winds increases to lower potential well depth

• Caveat: ionised phase only!