THE UNIVERSITY
of EDINBURGH

BAGPIPES

THE PHYSICAL PROPERTIES OF MASSIVE QUIESCENT GALAXIES AT $1.0 < z < 1.3$

Adam Carnall, Ross McLure, Jim Dunlop + The VANDELS Team

ESO VIMOS public spectroscopic survey of UDS and CDFS
2100 galaxies with average integration time of 45 hours
High-SNR spectroscopy for physical parameter recovery

13 per cent (268) are massive quiescent galaxies at $1.0 < z < 2.5$

$N = 180$, $1.0 < z < 1.5$
Total exposure time: 7,040 hours!
BAYESIAN ANALYSIS OF GALAXIES FOR PHYSICAL INFERENCE AND PARAMETER ESTIMATION

Carnall et al. (2019b)

http://bagpipes.readthedocs.io
Bayesian Analysis of Galaxies for Physical Inference and Parameter Estimation

Carnall et al. (2019b)

http://bagpipes.readthedocs.io
Trends with UVJ Colours

$1.0 < z < 1.3$

$M_* > 10^{10.3} \, \text{M}_\odot$

Carnall et al. (2019b)
TRENDS WITH UVJ COLOURS

\[1.0 < z < 1.3 \]
\[M_* > 10^{10.3} \, M_\odot \]

Carnall et al. (2019b)
TRENDS WITH UVJ COLOURS

\log_{10}(sSFR/\text{yr}^{-1}) \gtrsim -10.5

\log_{10}(sSFR/\text{yr}^{-1}) \lesssim -10.5

Carnall et al. (2019b)
TIME EVOLUTION OF UVJ COLOURS

1.0 < z < 1.3

$M_\ast > 10^{10.3} M_\odot$

Carnall et al. (2019b)
TIME EVOLUTION OF UVJ COLOURS

Carnall et al. (2019b)
FORMATION REDSHIFTS

Carnall et al. (2019b)
FORMATION REDSHIFTS

Carnall et al. (2019b)
Formation Redshifts

Carnall et al. (2019b)
The Oldest Galaxies at $z=1$
The Oldest Galaxies at $z=1$

\[
\log_{10}(M_*/M_\odot) = 11.26^{+0.12}_{-0.10}
\]
THE OLDEST GALAXIES AT $z=1$

$z_{\text{form}} = 7.4^{+3.2}_{-1.9}$

$\log_{10}(M_*/M_\odot) = 11.26^{+0.12}_{-0.10}$
The Oldest Galaxies at $z=1$

Carnall, Walker et al. (2020): photometric selection and physical properties of $2 < z < 5$ massive quiescent galaxies in CANDELS UDS and GOODS-South
Stellar Metallicities

- Gallazzi et al. (2006) $z \sim 0.1$
- Gallazzi et al. (2014) $z \sim 0.7$
- Carnall et al. (2019b) $z \sim 1.15$

Optical

UV
Stellar Metallicities

Best fit (Carnall et al. 2019b)

$z = 1.135 \quad Z^* = 0.51^{+0.09}_{-0.08} Z_\odot$

VANDELS spectrum

KMOS YJ
Stellar Metallicities

(Preliminary)

$1.0 < z < 1.1$
CONCLUSIONS

Full spectral fitting is the right way to learn about galaxy physical properties, a Bayesian approach with flexible noise modelling can make this possible.

The $z \gtrsim 1$ quiescent population already has a diverse range of SFHs, upcoming surveys will provide the statistics to constrain high redshift quenching models.

Evidence for the earliest massive quiescent galaxies forming at $z \sim 6$.