Future prospects for galaxy formation simulations

Volker Springel

- The past: The trouble with hydrodynamic simulations of galaxy formation
- The present: Too good to be true?
- The future: physical and numerical challenges
N-body simulations accurately evolve cosmological ICs into the non-linear regime

PREDICTIONS FROM N-BODY SIMULATIONS

- Abundance of halos as a function of mass and time
- Their spatial distribution
- Internal structure of halo (e.g. density profiles, spin)
- Mean halo formation epochs
- Merger rates
- Gravitational lensing statistics
-

Dark matter structure growth is well understood.
The overcooling problem refers to excess star formation produced by hydrodynamic simulations on essentially all halo mass scales.

STAR FORMATION HISTORY AND LUMINOSITY FUNCTION FOR SIMULATIONS WITH WEAK / NO FEEDBACK

Baryon conversion efficiency without feedback excessively high (~ 30%-100%)
Massive bulges and peaked rotation curves in early simulations of disk galaxies

EXCESS BULGE FORMATION AND WEAK DISKS

Abadi et al. (2003)
Gradual progress in forming realistic disk galaxies over the last decade
TOWARDS MILKY WAY GALAXIES OUT OF THE SUPERCOMPUTER

Scannapieco et al. (2011, 2012)
Guedes et al. (2011)
Agertz et al. (2011)
Increasingly realistic galaxies have been obtained in recent years.

TOWARDS MILKY WAY GALAXIES OUT OF THE SUPERCOMPUTER

- Stinson et al. (2013)
- Aumer et al. (2013)
- Marinacci et al. (2014)
- Hopkins et al. (2014)
Including dust in mock stellar light images of simulated galaxies produces “pretty”, visually realistic galaxies.

Marinacci et al. (2019)
What physics is responsible for regulating star formation?

- Supernova explosions (energy & momentum input)
- Stellar winds
- AGN activity
- Radiation pressure on dust
- Photoionizing UV background and Reionization
- Modification of cooling through local UV/X-ray flux
- Photoelectric heating
- Cosmic ray pressure
- Magnetic pressure and MHD turbulence
- TeV-blazar heating of low density gas
- Exotic physics (decaying dark matter particles, etc.)
Code accuracy matters despite strong feedback processes

COMPARISON OF GAS AND TEMPERATURE FIELDS IN AREPO VS EQUIVALENT SPH SIMULATIONS

Effects due to feedback are typically stronger than code differences.

It is often argued that one can hence ignore hydrodynamical code inaccuracies in galaxy formation...

Vogelsberger et al. (2012)
Hydrodynamical cosmological simulations of galaxy formation have made tremendous progress in recent years

AN INCOMPLETE OVERVIEW OF SOME OF THE LARGER PROJECTS

Illustris (Vogelsberger et al. 2014)

EAGLE (Schaye et al. 2015)

Horizon-AGN (Dubois et al. 2014)

MassiveBlack II (Khandai et al. 2015)

Magneticum (Dolag et al. 2014)

TNG (Illustris Collaboration 2017)
The Illustris simulation reproduces the morphological mix of galaxies.

- ellipticals
- disk galaxies
- irregular
The “Next Generation Illustris Simulations” (IllustrisTNG) are our novel, significantly improved models for cosmic structure formation.

DIFFERENT SIMULATIONS OF THE ILLUSTRIS-TNG PROJECT

IllustrisTNG Collaboration (2017)
HazelHen, 7.4 Pflops
HLRS Stuttgart
IllustrisTNG reproduces the color-bimodality of galaxies thanks to AGN feedback

COLOR DISTRIBUTION OF GALAXIES OF DIFFERENT MASS COMPARED TO SDSS

Nelson et al. (2017)
IllustrisTNG predicts galaxy correlation functions in good agreement with the most accurate galaxy surveys.

Projected two-point functions in different mass bins.
IllustrisTNG predicts pronounced differences in the clustering of red and blue galaxies in good agreement with data.

CLUSTERING IN DIFFERENT MASS AND COLOR BINS COMPARED TO SDSS

Springel et al. (2018)
Newer hydrodynamic models predict a reasonably consistent size of the influence of AGN feedback.
The sizes of different galaxies types reproduce observed trends with stellar mass well.

ILLUSTRIS-TNG GALAXY SIZES AS A FUNCTION OF STELLAR MASS

Genel et al. (2018)

Diagram:

- **A:** Main-sequence / late-type galaxies
 - Logarithmic scale on the x-axis for stellar mass in units of M_\odot
 - Logarithmic scale on the y-axis for the half-light radius $R_{1/2}$ in kpc

- **B:** Quenched / early-type galaxies
 - Similar scale settings as in (A)
Various morphological indicators yield good agreement between TNG and Pan-STARRS GINI, CONCENTRATION, BULGE-SIZE

Rodriguez-Gomez et al. (2018)
Milky Way-like galaxies in LCDM reproduce observed rotation curves, but have high dark matter fractions.

STACKED ROTATION CURVES IN ILLUSTRIS-TNG COMPARED TO DATA FOR MILKY-WAY(s)

Lovell et al. (2018)
Observed metallicity profiles of galaxy clusters are reproduced by IllustrisTNG

Vogelsberger et al. (2018)
What you put in is what you get
We have adopted a model for kinetic AGN winds in cosmological simulations of galaxy formation

IMPACT OF THE ILLUSTRIS-TNG AGN MODEL

We obtain \textbf{sudden} quenching, setting in at around $M \sim 2 \times 10^{10} \, M_{\odot}$

Weinberger et al. (2017)
The gas fractions in galaxy groups and poor clusters provide a sensitive constraint on viable AGN feedback models.

GAS FRACTIONS WITH THE NEW ILLUSTRIS-TNG AGN MODEL

Weinberger et al. (2017)
Systematic resolution studies can establish fiducial converged results.

GALAXY SIZES IN TNG AS A FUNCTION OF NUMERICAL RESOLUTION AND STELLAR MASS

Pillepich et al. (2018)
Galaxy kinematics converges reasonably well, but disk heights are hard.

RESOLUTION TESTS WITHIN TNG

Pillepich et al. (2018)
The best: testable new predictions from simulations
Black hole growth influences disk sizes

BLACK HOLE GROWTH BETWEEN Z=1 AND Z=0 CORRELATED WITH DISK SCALE LENGTHS

Grand et al. (2016)
Modern MHD simulations of galaxy formation can predict the amplification of primordial fields in halos and galaxies

MAGNETIC FIELD STRENGTH IN ILLUSTRIS-TNG

Marinacci et al. (2018)
Amplification of B-field occurs through turbulent small-scale dynamo

VELOCITY FIELD AND EVOLUTION OF VELOCITY AND B-FIELD POWER SPECTRA

Pakmor et al. (2017)
Faraday rotation maps provide one of the best ways to observationally probe the magnetic field in galaxies

COSMOLOGICAL PREDICTIONS FROM AURIGA COMPARED TO OBSERVATIONS OF M51

\[RM = \frac{e^3}{2\pi m_e^2 c^3} \int n_e(l) \vec{B}(l) \cdot d\vec{l}, \]

Pakmor et al. (2018)
The predicted radial magnetic field strength and Faraday rotation signal matches the Galaxy very well.

B-FIELD STRENGTH AND FARADAY ROTATION MAPS

M101

Pakmor et al. (2017)

Reissl et al. (2018)

Milky Way
Some trends for the future
The next simulation generations will continue to push volume and resolution, in part at the same time.

THE UNIQUE SPOT OF TNG50 IN SIMULATION PARAMETER SPACE

Nelson et al. (2019)
Refining the CGM resolves more cooler HI clumps

SUPERT-LANGRANGIAN ZOOM SIMULATIONS OF THE CIRCUM-GALACTIC MEDIUM

van de Voort et al. (2018)

see also:
Hummels et al. (2018)
Suresh et al. (2019)
How can galaxies shed a substantial fraction of their baryonic content?

FLOWS IN THE CIRCUM-GALACTIC MEDIUM IN A GALAXY FROM THE TNG-50 SIMULATION

Nelson et al. (2019)
The dynamic range challenge

Grand et al. (2016)

Angulo et al. (2012)

Jiang, Stone & Davis (2014)

Kim & Ostriker (2016)
Adding cosmic rays to galaxy formation simulations makes the dynamic range problem much harder.

GYRO-RADIUS COMPARED TO THE SIZE OF A GALAXY

Milky Way-like galaxy:

\[r_{gal} \sim 10^4 \, \text{pc} \]

gyro-orbit of GeV cosmic ray:

\[r_{cr} = \frac{p_\perp}{e B_{\mu G}} \sim 10^{-6} \, \text{pc} \sim \frac{1}{4} \, \text{AU} \]

Need to develop an effective two-fluid theory that can be treated with hydrodynamical methods.
Cosmic rays can drive galactic winds when coupled with transport processes

DISK SIMULATIONS BY DIFFERENT GROUPS

- Uhlig et al. (2012)
- Hanasz et al. (2013)
- Booth et al. (2013)
- Salem et al. (2014)
Resolved multi-phase ISM disk simulations

AN ISOLATED DISK GALAXY WITH THE NEW SMUGGLE MODEL IN AREPO

Marinacci et al. (2019)
Old ISM sub-grid models need to be overcome.

GAS DENSITY IN AN ISOLATED DISK GALAXY WITH THE SPRINGEL & HERNQUIST MODEL (2003)

Marinacci et al. (2019)
Global star-formation properties not necessarily very different

STAR FORMATION IN ISOLATED DISK GALAXIES RUN WITH SMUGGLE AND SH2003

Marinacci et al. (2019)
Radiation pressure provides at most weak feedback on galaxy scales

THE FRONTIER OF SELF-CONSISTENT RADIATION-HYDRODYNAMIC SIMULATIONS

Rosdahl et al. (2015)
Cold, stream-fed accretion has been overstated for numerical reasons.

PAST MAXIMUM TEMPERATURE OF GAS ACCELETED ON GALAXIES IN DIFFERENT METHODS

Nelson et al. (2013)
More accurate and scalable simulation codes
Discontinuous Galerkin (DG) approaches offer higher accuracy at given computational cost and retain data locality at high order.

BASIC DISCONTINUOUS GALERKIN EQUATIONS

\[
\frac{\partial}{\partial t} u + \boldsymbol{\nabla} \tilde{F}(u) = 0
\]

Schaal et al. (2015)
Guillet et al. (2019)

\[
\frac{\partial}{\partial t} \int_{K} u \phi_j dV + \int_{\partial K} \phi_j \tilde{F}(u) \hat{n} dS - \int_{K} \tilde{F}(u) \boldsymbol{\nabla} \phi_j dV = 0
\]

Riemann solvers plus Gaussian quadrature

approximation uses 12 reals in each panel
We achieve 6-th order convergence in smooth MHD problems

Guillet et al. (2019)
It still has to be seen whether DG methods can survive in harsh astrophysical environments...

THE REALITY TEST WE ARE FACING

High-order DG methods

Guillet et al. (2019)
The subgrid problem is here to stay
HOW DO WE ARRIVE AT PREDICTIVE AND RELIABLE SIMULATION MODELS?

• DNS in galaxy formation is impossible.

• There will always be unresolved scales with physics that affects the resolved scales – how should they be treated?

• Obvious answer: Through approximations (aka subgrid models)

• Best to have subgrid scale come in at natural divides, which minimizes the number of tunable parameters

In the numerical models, need to distinguish between:

physical fidelity (which physics is included/neglected, which approximations are made, etc.)

numerical accuracy (what errors are made due to discretization noise, limited resolution, gravitational softening, etc.)

They are mixed in some simulation models in a non-separable way.
Take home points

• Recent hydrodynamical cosmological simulations have made substantial progress towards successfully forming galaxies within ΛCDM.

• Much of the small-scale physics of feedback remains however poorly understood.

• Multi-scale, multi-physics simulations will be necessary to understand the associated fundamental astrophysical questions.

• There are numerous discrepant claims about the relative importance of different physics – it is clear that some data is matched for the wrong reason.

• As a guide to the most robust results, look for those that are found independently by different groups and different codes.