skip to content

Kavli Institute for Cosmology, Cambridge

 

Dark energy bombshell sparks race to find a new model of the universe

Sat, 03/05/2025 - 18:38

‘Shocking’ results from a major astronomical study have raised doubts about the standard model of cosmology, forcing scientists to consider new ways of understanding dark energy and gravity

The 'impossible' particle hinting at the universe's biggest secrets

Tue, 29/04/2025 - 10:23

Neutrinos have always been hard to explain – and now the detection of one so energetic it shouldn't exist may help illuminate the strangest corners of the cosmos

‘Dark matter’, 'Big Bang' and ‘spin’: how physics terms can confuse researchers

Wed, 23/04/2025 - 10:32

Nature, Published online: 22 April 2025; doi:10.1038/d41586-025-01089-w

In episode three of What's in a name we look at how ideas can be lost in translation when physicists try to name the unknown.

Top quarks spotted at mega-detector could reveal clues to early Universe

Fri, 11/04/2025 - 14:25

Nature, Published online: 10 April 2025; doi:10.1038/d41586-025-01075-2

Heaviest known elementary particles and their antimatter counterparts are detected after nuclear smash-ups at the Large Hadron Collider.

FAST Drift Scan Survey for HI Intensity Mapping. II. Stacking-based Beam Construction of the 19-feed Array at $1.4$ GHz

Thu, 10/04/2025 - 10:27
arXiv:2412.02582v2 Announce Type: replace Abstract: Neutral hydrogen (HI) intensity mapping (IM) presents great promise for future cosmological large-scale structure surveys. However, a major challenge for HIIM cosmological studies is to accurately subtract the foreground contamination. An accurate beam model is crucial for improving the quality of foreground subtraction. In this work, we develop a stacking-based beam reconstruction method utilizing the radio continuum point sources within the drift-scan field. Based on the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we employ two sets of drift-scan survey data and merge the measurements to construct the beam patterns of the 19 FAST L-band feeds. To model the beams, we utilize the Zernike polynomial (ZP), which effectively captures asymmetric features of the main beam and the different side lobes. Due to the symmetric location of the beams, the main features of the beams are closely related to the distance from the center of the feed array, e.g., as the distance increases, side lobes become more pronounced. This modeling pipeline leverages the stable drift-scan data to extract beam patterns while accounting for and excluding the reflector's changing effects. It provides a more accurate measurement beam and a more precise model beam for FAST HIIM cosmology surveys.

Space could emerge from time

Wed, 09/04/2025 - 10:29

An investigation of the changing behaviour of a single quantum bit through time has uncovered a tantalising similarity to the geometry of three-dimensional space

How nothing could destroy the universe

Wed, 02/04/2025 - 09:21

The concept of nothing once sparked a 1000-year-long war, today it might explain dark energy and nothingness even has the potential to destroy the universe, explains physicist Antonio Padilla

BBC Inside Science

Fri, 28/03/2025 - 11:52

How a ‘dark energy’ experiment could upend Einstein's theory of the universe.

A lighthouse galaxy shines unexpectedly through the fog of the cosmic dawn

Thu, 27/03/2025 - 10:47

Nature, Published online: 26 March 2025; doi:10.1038/d41586-025-00899-2

Ultraviolet light from a galaxy observed when the Universe was just 330 million years old has intriguing implications for understanding how the first generations of stars and black holes were formed.

An early hint of cosmic dawn has been seen in a distant galaxy

Thu, 27/03/2025 - 10:45

A galaxy inside a bubble may be evidence that the universe was starting to become transparent 330 million years after the big bang

NASA’s Webb Sees Galaxy Mysteriously Clearing Fog of Early Universe

Thu, 27/03/2025 - 10:45
Explore This Section 5 Min Read NASA’s Webb Sees Galaxy Mysteriously Clearing Fog of Early Universe The incredibly distant galaxy JADES-GS-z13-1, observed just 330 million years after the big bang, was initially discovered with deep imaging from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). Full image below. Credits:
NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), A. Pagan (STScI), M. Zamani (ESA/Webb)

Using the unique infrared sensitivity of NASA’s James Webb Space Telescope, researchers can examine ancient galaxies to probe secrets of the early universe. Now, an international team of astronomers has identified bright hydrogen emission from a galaxy in an unexpectedly early time in the universe’s history. The surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.

The Webb telescope discovered the incredibly distant galaxy JADES-GS-z13-1, observed to exist just 330 million years after the big bang, in images taken by Webb’s NIRCam (Near-Infrared Camera) as part of the James Webb Space Telescope Advanced Deep Extragalactic Survey (JADES). Researchers used the galaxy’s brightness in different infrared filters to estimate its redshift, which measures a galaxy’s distance from Earth based on how its light has been stretched out during its journey through expanding space.

Image A: JADES-GS-z13-1 in the GOODS-S field (NIRCam Image) The incredibly distant galaxy JADES-GS-z13-1, observed just 330 million years after the big bang, was initially discovered with deep imaging from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera). Now, an international team of astronomers definitively has identified powerful hydrogen emission from this galaxy at an unexpectedly early period in the universe’s history. JADES-GS-z-13 has a redshift (z) of 13, which is an indication of its age and distance. NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), A. Pagan (STScI), M. Zamani (ESA/Webb) Image B: JADES-GS-z13-1 (NIRCam Close-Up) This image shows the galaxy JADES GS-z13-1 (the red dot at center), imaged with NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) as part of the JWST Advanced Deep Extragalactic Survey (JADES) program. These data from NIRCam allowed researchers to identify GS-z13-1 as an incredibly distant galaxy, and to put an estimate on its redshift value. Webb’s unique infrared sensitivity is necessary to observe galaxies at this extreme distance, whose light has been shifted into infrared wavelengths during its long journey across the cosmos. NASA, ESA, CSA, JADES Collaboration, J. Witstok (University of Cambridge/University of Copenhagen), P. Jakobsen (University of Copenhagen), M. Zamani (ESA/Webb)

The NIRCam imaging yielded an initial redshift estimate of 12.9. Seeking to confirm its extreme redshift, an international team lead by Joris Witstok of the University of Cambridge in the United Kingdom, as well as the Cosmic Dawn Center and the University of Copenhagen in Denmark, then observed the galaxy using Webb’s Near-Infrared Spectrograph instrument.

In the resulting spectrum, the redshift was confirmed to be 13.0. This equates to a galaxy seen just 330 million years after the big bang, a small fraction of the universe’s present age of 13.8 billion years old. But an unexpected feature stood out as well: one specific, distinctly bright wavelength of light, known as Lyman-alpha emission, radiated by hydrogen atoms. This emission was far stronger than astronomers thought possible at this early stage in the universe’s development.

“The early universe was bathed in a thick fog of neutral hydrogen,” explained Roberto Maiolino, a team member from the University of Cambridge and University College London. “Most of this haze was lifted in a process called reionization, which was completed about one billion years after the big bang. GS-z13-1 is seen when the universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-alpha emission that can only be seen once the surrounding fog has fully lifted. This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise.”

Image C: JADES-GS-z13-1 Spectrum Graphic NASA’s James Webb Space Telescope has detected unexpected light from a distant galaxy. The galaxy JADES-GS-z13-1, observed just 330 million years after the big bang (corresponding to a redshift of z=13.05), shows bright emission from hydrogen known as Lyman-alpha emission. This is surprising because that emission should have been absorbed by a dense fog of neutral hydrogen that suffused the early universe. NASA, ESA, CSA, J. Witstok (University of Cambridge, University of Copenhagen), J. Olmsted (STScI)

Before and during the era of reionization, the immense amounts of neutral hydrogen fog surrounding galaxies blocked any energetic ultraviolet light they emitted, much like the filtering effect of colored glass. Until enough stars had formed and were able to ionize the hydrogen gas, no such light — including Lyman-alpha emission — could escape from these fledgling galaxies to reach Earth. The confirmation of Lyman-alpha radiation from this galaxy, therefore, has great implications for our understanding of the early universe.

“We really shouldn’t have found a galaxy like this, given our understanding of the way the universe has evolved,” said Kevin Hainline, a team member from the University of Arizona. “We could think of the early universe as shrouded with a thick fog that would make it exceedingly difficult to find even powerful lighthouses peeking through, yet here we see the beam of light from this galaxy piercing the veil. This fascinating emission line has huge ramifications for how and when the universe reionized.”

The source of the Lyman-alpha radiation from this galaxy is not yet known, but it may include the first light from the earliest generation of stars to form in the universe.

“The large bubble of ionized hydrogen surrounding this galaxy might have been created by a peculiar population of stars — much more massive, hotter, and more luminous than stars formed at later epochs, and possibly representative of the first generation of stars,” said Witstok. A powerful active galactic nucleus, driven by one of the first supermassive black holes, is another possibility identified by the team.

This research was published Wednesday in the journal Nature.

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

Downloads

Click any image to open a larger version.

View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.

View/Download the research results from the journal Nature.

Media Contacts

Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Bethany DownerBethany.Downer@esawebb.org
ESA/Webb, Baltimore, Md.

Christine Pulliamcpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.

Related Information

Read more about cosmic history, the early universe, and cosmic reionization.

Article: Learn about what Webb has revealed about galaxies through time.

Video: How Webb reveals the first galaxies

More Webb News

More Webb Images

Webb Science Themes

Webb Mission Page

Related For Kids

What Is a Galaxy?

What is the Webb Telescope?

SpacePlace for Kids

En Español

¿Qué es una galaxia?

Ciencia de la NASA

NASA en español 

Space Place para niños

Keep Exploring Related Topics James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


Galaxies


Galaxies Stories


Universe

Share Details Last Updated Mar 26, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms

Dark Energy experiment challenges Einstein's theory of Universe

Thu, 27/03/2025 - 10:44

New research could force a fundamental rethink of the nature of space and time.

Webb Telescope sees galaxy in mysteriously clearing fog of early Universe

Thu, 27/03/2025 - 10:43

A key goal of the NASA/ESA/CSA James Webb Space Telescope has been to see further than ever before into the distant past of our Universe, when the first galaxies were forming after the Big Bang, a period know as cosmic dawn.

Researchers studying one of those very early galaxies have now made a discovery in the spectrum of its light, that challenges our established understanding of the Universe’s early history. Their results are reported in the journal Nature.

Webb discovered the incredibly distant galaxy JADES-GS-z13-1, observed at just 330 million years after the Big Bang. Researchers used the galaxy’s brightness in different infrared filters to estimate its redshift, which measures a galaxy’s distance from Earth based on how its light has been stretched out during its journey through expanding space.

The NIRCam imaging yielded an initial redshift estimate of 12.9. To confirm its extreme redshift, an international team led by Dr Joris Witstok, previously of the University of Cambridge’s Kavli Institute for Cosmology, observed the galaxy using Webb’s Near-Infrared Spectrograph (NIRSpec) instrument.

The resulting spectrum confirmed the redshift to be 13.0. This equates to a galaxy seen just 330 million years after the Big Bang, a small fraction of the Universe’s present age of 13.8 billion years.

But an unexpected feature also stood out: one specific, distinctly bright wavelength of light, identified as the Lyman-α emission radiated by hydrogen atoms. This emission was far stronger than astronomers thought possible at this early stage in the Universe’s development.

“The early Universe was bathed in a thick fog of neutral hydrogen,” said co-author Professor Roberto Maiolino from Cambridge’s Kavli Institute for Cosmology. “Most of this haze was lifted in a process called reionisation, which was completed about one billion years after the Big Bang.

“GS-z13-1 is seen when the Universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-α emission that can only be seen once the surrounding fog has fully lifted. This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise.”

Before and during the epoch of reionisation, neutral hydrogen fog surrounding galaxies blocked any energetic ultraviolet light they emitted, much like the filtering effect of coloured glass. Until enough stars had formed and were able to ionise the hydrogen gas, no such light — including Lyman-α emission — could escape from these fledgling galaxies to reach Earth.

The confirmation of Lyman-α radiation from this galaxy has great implications for our understanding of the early Universe. “We really shouldn’t have found a galaxy like this, given our understanding of the way the Universe has evolved,” said co-author Kevin Hainline from the University of Arizona. “We could think of the early Universe as shrouded with a thick fog that would make it exceedingly difficult to find even powerful lighthouses peeking through, yet here we see the beam of light from this galaxy piercing the veil.”

The source of the Lyman-α radiation from this galaxy is not yet known, but it may include the first light from the earliest generation of stars to form in the Universe. “The large bubble of ionised hydrogen surrounding this galaxy might have been created by a peculiar population of stars — much more massive, hotter and more luminous than stars formed at later epochs, and possibly representative of the first generation of stars,” said Witstok, who is now based at the Cosmic Dawn Center at the University of Copenhagen. A powerful active galactic nucleus, driven by one of the first supermassive black holes, is another possibility identified by the team.

The team plans further follow-up observations of GS-z13-1, aiming to obtain more information about the nature of this galaxy and origin of its strong Lyman-α radiation. Whatever the galaxy is concealing, it is certain to illuminate a new frontier in cosmology.

JWST is an international partnership between NASA, ESA and the Canadian Space Agency (CSA). The data for this result were captured as part of the JWST Advanced Deep Extragalactic Survey (JADES).

Reference:
Joris Witstok et al. ‘Witnessing the onset of reionization through Lyman-α emission at redshift 13.’ Nature (2025). DOI: 10.1038/s41586-025-08779-5

Adapted from an ESA media release.

Astronomers have identified a bright hydrogen emission from a galaxy in the very early Universe. The surprise finding is challenging researchers to explain how this light could have pierced the thick fog of neutral hydrogen that filled space at that time.

This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surpriseRoberto MaiolinoESA/Webb, NASA, STScI, CSA, JADES CollaborationJADES-GS-z13-1 in the GOODS-S field


The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.

Yes

The expanding Universe — do ongoing tensions leave room for new physics?

Mon, 24/03/2025 - 16:03

Nature, Published online: 24 March 2025; doi:10.1038/d41586-025-00896-5

One century after Edwin Hubble revealed his astonishing discovery of a cosmos beyond the Milky Way, the most precise measurements still can’t agree on how fast galaxies are moving.

Dark Energy experiment challenges Einstein's theory of Universe

Thu, 20/03/2025 - 09:50

New research could force a fundamental rethink of the nature of space and time.

Is dark energy getting weaker? Fresh data bolster shock finding

Thu, 20/03/2025 - 09:49

Nature, Published online: 19 March 2025; doi:10.1038/d41586-025-00837-2

Physicists had long assumed that the elusive force has constant strength. But the latest results from a project to map the Universe’s expansion challenge this idea.

Dark energy isn't what we thought – and that may transform the cosmos

Thu, 20/03/2025 - 09:49

Our current best theories of the universe suggest that dark energy is making it expand faster and faster, but new observations from the Dark Energy Spectroscopic Instrument suggest this mysterious force is actually growing weaker

Is our cosmos just a membrane on the edge of a far stranger reality?

Wed, 19/03/2025 - 17:40

String theory may be our best attempt at a theory of everything, except that it can't describe an expanding universe like ours. Now a radical new twist on the idea could finally fix that – but it requires us to completely reimagine reality

ESA Previews Euclid Mission’s Deep View of ‘Dark Universe’

Wed, 19/03/2025 - 16:45

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) This image shows about 1.5% of Euclid’s Deep Field South, one of three regions of the sky that the telescope will observe for more than 40 weeks over the course of its prime mission, spotting faint and distant galaxies. One galaxy cluster near the center is located almost 6 billion light-years away from Earth. ESA/Euclid/Euclid Consortium/NASA; image processing by J.-C. Cuillandre, E. Bertin, G. An-selmi

With contributions from NASA, the mission is looking back into the universe’s history to understand how the universe’s expansion has changed. 

The Euclid mission — led by ESA (European Space Agency) with contributions from NASA — aims to find out why our universe is expanding at an accelerating rate. Astronomers use the term “dark energy” to refer to the unknown cause of this phenomenon, and Euclid will take images of billions of galaxies to learn more about it. A portion of the mission’s data was released to the public by ESA released on Wednesday, March 19.

This new data has been analyzed by mission scientists and provides a glimpse of Euclid’s progress. Deemed a “quick” data release, this batch focuses on select areas of the sky to demonstrate what can be expected in the larger data releases to come and to allow scientists to sharpen their data analysis tools in preparation.

The data release contains observations of Euclid’s three “deep fields,” or areas of the sky where the space telescope will eventually make its farthest observations of the universe. Featuring one week’s worth of viewing, the Euclid images contain 26 million galaxies, the most distant being over 10.5 billion light-years away. Launched in July 2023, the space telescope is expected to observe more than 1.5 billion galaxies during its six-year prime mission.

The entirety of the Euclid mission’s Deep Field South region is shown here. It is about 28.1 square degrees on the sky. Euclid will observe this and two other deep field regions for a total of about 40 weeks during its 6-year primary mission. ESA/Euclid/Euclid Consortium/NASA; image processing by J.-C. Cuillandre, E. Bertin, G. An-selmi

By the end of that prime mission, Euclid will have observed the deep fields for a total of about 40 weeks in order to gradually collect more light, revealing fainter and more distant galaxies. This approach is akin to keeping a camera shutter open to photograph a subject in low light.

The first deep field observations, taken by NASA’s Hubble Space Telescope in 1995, famously revealed the existence of many more galaxies in the universe than expected. Euclid’s ultimate goal is not to discover new galaxies but to use observations of them to investigate how dark energy’s influence has changed over the course of the universe’s history.

In particular, scientists want to know how much the rate of expansion has increased or slowed down over time. Whatever the answer, that information would provide new clues about the fundamental nature of this phenomenon. NASA’s Nancy Grace Roman Space Telescope, set to launch by 2027, will also observe large sections of the sky in order to study dark energy, complementing Euclid’s observations.

The location of the Euclid deep fields are shown marked in yellow on this all-sky view from ESA’s Gaia and Planck missions. The bright horizontal band is the plane of our Milky Way galaxy. Euclid’s Deep Field South is at bottom left.ESA/Euclid/Euclid Consortium/NASA; ESA/Gaia/DPAC; ESA/Planck Collaboration Looking Back in Time

To study dark energy’s effect throughout cosmic history, astronomers will use Euclid to create detailed, 3D maps of all the stuff in the universe. With those maps, they want to measure how quickly dark energy is causing galaxies and big clumps of matter to move away from one another. They also want to measure that rate of expansion at different points in the past. This is possible because light from distant objects takes time to travel across space. When astronomers look at distant galaxies, they see what those objects looked like in the past.

For example, an object 100 light-years away looks the way it did 100 years ago. It’s like receiving a letter that took 100 years to be delivered and thus contains information from when it was written. By creating a map of objects at a range of distances, scientists can see how the universe has changed over time, including how dark energy’s influence may have varied.

But stars, galaxies, and all the “normal” matter that emits and reflects light is only about one-fifth of all the matter in the universe. The rest is called “dark matter” — a material that neither emits nor reflects light. To measure dark energy’s influence on the universe, astronomers need to include dark matter in their maps.  

Bending and Warping

Although dark matter is invisible, its influence can be measured through something called gravitational lensing. The mass of both normal and dark matter creates curves in space, and light traveling toward Earth bends or warps as it encounters those curves. In fact, the light from a distant galaxy can bend so much that it forms an arc, a full circle (called an Einstein ring), or even multiple images of the same galaxy, almost as though the light has passed through a glass lens.

In most cases, gravitational lensing warps the apparent shape of a galaxy so subtly that researchers need special tools and computer software to see it. Spotting those subtle changes across billions of galaxies enables scientists to do two things: create a detailed map of the presence of dark matter and observe how dark energy influenced it over cosmic history.

It is only with a very large sample of galaxies that researchers can be confident they are seeing the effects of dark matter. The newly released Euclid data covers 63 square degrees of the sky, an area equivalent to an array of 300 full Moons. To date, Euclid has observed about 2,000 square degrees, which is approximately 14% of its total survey area of 14,000 square degrees. By the end of its mission, Euclid will have observed a third of the entire sky.

The dataset released this month is described in several preprint papers available today. The mission’s first cosmology data will be released in October 2026. Data accumulated over additional, multiple passes of the deep field locations will also be included in the 2026 release.

More About Euclid

Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium — consisting of more than 2,000 scientists from 300 institutes in 15 European countries, the United States, Canada, and Japan — is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.

Three NASA-supported science teams contribute to the Euclid mission. In addition to designing and fabricating the sensor-chip electronics for Euclid’s Near Infrared Spectrometer and Photometer (NISP) instrument, JPL led the procurement and delivery of the NISP detectors as well. Those detectors, along with the sensor chip electronics, were tested at NASA’s Detector Characterization Lab at Goddard Space Flight Center in Greenbelt, Maryland. The Euclid NASA Science Center at IPAC (ENSCI), at Caltech in Pasadena, California, supports U.S.-based science investigations, and science data is archived at the NASA / IPAC Infrared Science Archive (IRSA). JPL is a division of Caltech.

For more information about Euclid go to:

science.nasa.gov/mission/euclid/

News Media Contact

ESA Media Relations
media@esa.int

Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov

2025-039

Share Details Last Updated Mar 19, 2025 Related Terms Explore More 5 min read Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet

Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe.…

Article 1 day ago 3 min read Students Dive Into Robotics at Competition Supported by NASA JPL Article 2 days ago 3 min read NASA Analysis Shows Unexpected Amount of Sea Level Rise in 2024 Article 6 days ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Best ever map of early universe is double-edged sword for cosmologists

Wed, 19/03/2025 - 16:44

The finest ever map of the cosmic microwave background - the faint evidence of the universe's early form - has yielded precise confirmation of the age of the cosmos and its rate of expansion. But for some scientists, the findings offer a frustrating lack of clues to major cosmological mysteries