arXiv:2502.02983v2 Announce Type: replace
Abstract: Recent work has suggested that, during reionisation, spatial variations in the ionising radiation field should produce enhanced Ly ${\alpha}$ forest transmission at distances of tens of comoving Mpc from high-redshift galaxies. We demonstrate that the Sherwood-Relics suite of hybrid radiation-hydrodynamical simulations are qualitatively consistent with this interpretation. The shape of the galaxy--Ly ${\alpha}$ transmission cross-correlation is sensitive to both the mass of the haloes hosting the galaxies and the volume averaged fraction of neutral hydrogen in the IGM, $\bar{x}_{\rm HI}$. The reported excess Ly ${\alpha}$ forest transmission on scales r ~ 10 cMpc at $\langle z \rangle \approx 5.2$ -- as measured using C IV absorbers as proxies for high-redshift galaxies -- is quantitatively reproduced by Sherwood-Relics at z = 6 if we assume the galaxies that produce ionising photons are hosted in haloes with mass $M_{\rm h}\geq 10^{10}~h^{-1}\,{\rm M}_\odot$. However, this redshift mismatch is equivalent to requiring $\bar{x}_{\rm HI}\sim 0.1$ at $z\simeq 5.2$, which is inconsistent with the observed Ly ${\alpha}$ forest effective optical depth distribution. We suggest this tension may be partly resolved if the minimum C IV absorber host halo mass at z > 5 is larger than $M_{\rm h}=10^{10}~h^{-1}\,{\rm M}_\odot$. After reionisation completes, relic IGM temperature fluctuations will continue to influence the shape of the cross-correlation on scales of a few comoving Mpc at $4 \leq z \leq 5$. Constraining the redshift evolution of the cross-correlation over this period may therefore provide further insight into the timing of reionisation.
Towards understanding the epoch of reionization out to the cosmic dawn
Work on understanding the epoch of reionization has been galvanized in recent years by a series of observational and theoretical breakthroughs. These include the recognition that spatial structure in the Lyman-α forest retains signatures of reionization history, the discovery of galaxies and quasars deep in the reionization era by JWST , and renewed efforts to detect the redshifted 21-cm signal from cosmic dawn and the epoch of reionization. In this talk, I will present a series of results from our group that address the goal of understanding the evolving ionization state of the Universe, from cosmic dawn to the final stages of reionization. This includes new simulations of reionization, updated measurements of the mean free path of ionizing photons, improved constraints on the neutral hydrogen fraction from quasar damping wings, and interpretations of AGNs and LAEs discovered by JWST . I will describe our ongoing attempts to directly detect the neutral parts of the IGM for the first time using the 21-cm forest, and discuss the implications of JWST data for quasar growth during this era. Deeper into the reionization epoch, I will present new approaches to charting reionization using LAEs. Closer to cosmic dawn, I will highlight new radiative transfer models of Lyman-α coupling and a model-agnostic framework for combining JWST and 21-cm observations, including results from REACH . I will conclude by reviewing where we are and outlining key challenges ahead.
Add to your calendar or Include in your list
arXiv:2410.24134v3 Announce Type: replace
Abstract: We use the projected clustering of quasars in the Gaia-unWISE quasar catalog, Quaia, and its cross-correlation with CMB lensing data from Planck, to measure the large-scale turnover of the matter power spectrum, associated with the size of the horizon at the epoch of matter-radiation equality. The turnover is detected with a significance of between $2.3$ and $3.1\sigma$, depending on the method used to quantify it. From this measurement, the equality scale is determined at the $\sim20\%$ level. Using the turnover scale as a standard ruler alone (suppressing information from the large-scale curvature of the power spectrum), in combination with supernova data through an inverse distance ladder approach, we measure the current expansion rate to be $H_0=62.7\pm17.2\,{\rm km}\,{\rm s}^{-1}\,{\rm Mpc}^{-1}$. The addition of information coming from the power spectrum curvature approximately halves the standard ruler uncertainty. Our measurement in combination with calibrated supernovae from Pantheon$+$ and SH0ES constrains the CMB temperature to be $T_{\rm CMB}=3.10^{+0.48}_{-0.36}\,{\rm K}$, independently of CMB data. Alternatively, assuming the value of $T_{\rm CMB}$ from COBE-FIRAS, we can constrain the effective number of relativistic species in the early Universe to be $N_{\rm eff}=3.0^{+5.8}_{-2.9}$.
String axions: the hot and the fuzzy
String axions have been proposed as candidates for solving several puzzles in cosmology. In this talk, I will focus on axions as dark matter. After reviewing how string axions can occur in our universe, I will provide a string theoretical explanation of dark matter as composed of axions coming from type IIB string theory. Based on the latest bounds, I will show how likely it is for dark matter to be composed of such particles and in which abundance, and I will provide predictions on the preferred ranges of masses and decay constants. On the contrary, requiring the axions to lie in a particular range of the parameter space imposes constraints on the UV theory. I will focus both on the role of moduli stabilization and the landscape of string vacua. Finally, I will discuss axion production at the end of inflation and the implications for the proposed cosmic axion background.
Add to your calendar or Include in your list
arXiv:2407.04660v2 Announce Type: replace
Abstract: We introduce COBRA (Cosmology with Optimally factorized Bases of Radial Approximants), a novel framework for rapid computation of large-scale structure observables. COBRA separates scale dependence from cosmological parameters in the linear matter power spectrum while also minimising the number of necessary basis terms $N_b$, thus enabling direct and efficient computation of derived and nonlinear observables. Moreover, the dependence on cosmological parameters is efficiently approximated using radial basis function interpolation. We apply our framework to decompose the linear matter power spectrum in the standard $\Lambda$CDM scenario, as well as by adding curvature, dynamical dark energy and massive neutrinos, covering all redshifts relevant for Stage IV surveys. With only a dozen basis terms $N_b$, COBRA reproduces exact Boltzmann solver calculations to $\sim 0.1\%$ precision, which improves further to $0.02\%$ in the pure $\Lambda$CDM scenario. Using our decomposition, we recast the one-loop redshift space galaxy power spectrum in a separable minimal-basis form, enabling $\sim 4000$ model evaluations per second at $0.02\%$ precision on a single thread. This constitutes a considerable improvement over previously existing methods (e.g., FFTLog) opening a window for efficient computations of higher loop and higher order correlators involving multiple powers of the linear matter power spectra. The resulting factorisation can also be utilised in clustering, weak lensing and CMB analyses. Our implementation will be made public upon publication.
arXiv:2307.13768v2 Announce Type: replace
Abstract: We revisit the flat-sky approximation for evaluating the angular power spectra of projected random fields by retaining information about the correlations along the line of sight. With broad, overlapping radial window functions, these line-of-sight correlations are suppressed and are ignored in the Limber approximation. However, retaining the correlations is important for narrow window functions or unequal-time spectra but introduces significant computational difficulties due to the highly oscillatory nature of the integrands involved. We deal with the integral over line-of-sight wave-modes in the flat-sky approximation analytically, using the FFTlog expansion of the 3D power spectrum. This results in an efficient computational method, which is a substantial improvement compared to any full-sky approaches. We apply our results to galaxy clustering (with and without redshift-space distortions), CMB lensing and galaxy lensing observables. For clustering, we find excellent agreement with the full-sky results on large (percent-level agreement) and intermediate or small (subpercent agreement) scales, dramatically out-performing the Limber approximation for both wide and narrow window functions, and in equal- and unequal-time cases. In the case of lensing, we show on the full sky that the angular power spectrum of the convergence can be very well approximated by projecting the 3D Laplacian (rather than the correct angular Laplacian) of the gravitational potential, even on large scales. Combining this approximation with our flat-sky techniques provides an efficient and accurate evaluation of the CMB lensing angular power spectrum on all scales.
Spacetime Singularities and Black Holes
After a brief introduction to Einstein’s theory of general relativity and its most profound prediction of black holes, I will focus on spacetime singularities, i.e., regions where general relativity breaks down and must be replaced by a quantum theory of gravity. I first discuss singularities inside black holes. This is the usual case and is an old story, but there have been some recent developments. I will next describe some new results which show that some black holes have singularities on their surface. Finally, I will discuss the possibility of singularities outside black holes.
Add to your calendar or Include in your list
Growing pains: the dining habits of stars, planets and black holes
To make planets, stars and supermassive black holes, one must rapidly accrete material onto central objects. But the tiniest tangential motion combined with angular momentum conservation sends material into orbit, rather than accreting. Since work at the IoA in the 1970s we have understood that Nature solves the angular momentum problem by forming accretion discs, but the angular momentum transport mechanism remains unclear. The past 10 years have given us spectacular resolved observations of discs around both young and old stars, bringing fresh clues. In this talk I’ll explain how pairing 3D simulations with observations helps us solve the problem of accretion, revealing how stars and planets form, black holes grow and how accretion powers tidal disruption events.
Add to your calendar or Include in your list
arXiv:2503.21728v2 Announce Type: replace
Abstract: Radio-frequency interference (RFI) is a major systematic limitation in radio astronomy, particularly for science cases requiring high sensitivity, such as 21 cm cosmology. Traditionally, RFI is dealt with by identifying its signature in the dynamic spectra of visibility data and flagging strongly affected regions. However, for RFI sources that do not occupy narrow regions in the time-frequency space, such as persistent local RFI, modeling these sources could be essential to mitigating their impact. This paper introduces two methods for detecting and characterizing local RFI sources from radio interferometric visibilities: matched filtering and maximum a posteriori (MAP) imaging. These algorithms use the spherical wave equation to construct three-dimensional near-field image cubes of RFI intensity from the visibilities. The matched filter algorithm can generate normalized maps by cross-correlating the expected contributions from RFI sources with the observed visibilities, while the MAP method performs a regularized inversion of the visibility equation in the near field. We developed a full polarization simulation framework for RFI and demonstrated the methods on simulated observations of local RFI sources. The stability, speed, and errors introduced by these algorithms were investigated, and, as a demonstration, the algorithms were applied to a subset of NenuFAR observations to perform spatial, spectral, and temporal characterization of two local RFI sources. We used simulations to assess the impact of local RFI on images, the uv plane, and cylindrical power spectra, and to quantify the level of bias introduced by the algorithms in order to understand their implications for the estimated 21 cm power spectrum with radio interferometers. The near-field imaging and simulation codes are publicly available in the Python library nfis.
arXiv:2504.08081v1 Announce Type: new
Abstract: JAX-bandflux is a JAX implementation of critical supernova modelling functionality for cosmological analysis. The codebase implements key components of the established library SNCosmo in a differentiable framework, offering efficient parallelisation and gradient-based optimisation capabilities through GPU acceleration. The package facilitates differentiable computation of supernova light curve measurements, supporting the inference of SALT parameters necessary for cosmological analysis.
arXiv:2504.08041v1 Announce Type: new
Abstract: Feedback from active galactic nuclei (AGN) is crucial for regulating galaxy evolution. Motivated by observations of broad absorption line winds from rapidly accreting supermassive black holes (SMBHs), we introduce the Mistral AGN feedback model, implemented in the Arepo code. Mistral comes in two versions: continuous radial (Mistral-continuous) and stochastic bipolar momentum deposition (Mistral-stochastic). Using the framework of the IllustrisTNG simulations, we explore the effect of Mistral on BH and galaxy properties, through an idealized Milky Way-mass galaxy and cosmological zoom simulations run down to $z=2$. Unlike standard thermal AGN feedback prescriptions, Mistral generates galaxy-scale winds that mimic outflows driven by BH accretion. Mistral-continuous produces short-lived galactic fountains, and is inefficient at regulating the growth of massive galaxies at $z=2$. In contrast, Mistral-stochastic efficiently suppresses star formation in massive galaxies, and reproduces the empirical stellar-to-halo mass and ($z=0$) BH-stellar mass relations. By supporting large-scale ($>50\,\rm kpc$) outflows while simultaneously preventing gas inflows, Mistral-stochastic additionally regulates the cold and hot gas fractions at both galaxy and halo scales. Mistral-stochastic therefore works self-consistently across the halo mass range explored $\left(10^{12}-3\times10^{13}\,\rm M_\odot\right)$, without adopting a SMBH-mass dependent AGN feedback scheme such as the one used in IllustrisTNG. Our model is a promising tool for predicting the impact of radiatively efficient AGN winds on galaxy evolution, and interpreting the growing population of high-redshift galaxies and quasars observed by JWST. This work is part of the "Learning the Universe" collaboration, which aims to infer the physical processes governing the evolution of the Universe.
arXiv:2504.08028v1 Announce Type: new
Abstract: We study the luminosity function (LF) and clustering properties of 888 H$\alpha$ emitters (HAEs) at $3.75 < z < 6$ in the GOODS-N field. The sample, built from JWST CONGRESS and FRESCO NIRCam grism surveys using a novel redshift assignment algorithm, spans $\sim$62 arcmin$^2$ and reaches $L_{\rm H\alpha} \sim 10^{41.2} {\rm erg s^{-1}}$. We identify two prominent filamentary protoclusters at $z \approx 4.41$ and $z \approx 5.19$, hosting 98 and 144 HAEs, respectively. The observed H$\alpha$ LFs show similar shallow faint-end slopes for both protocluster and field galaxies at $z=3.75-5$, and for the protocluster at $z=5-6$ ($\alpha\approx 1.2$ to $-1.3$). In contrast, the field LF at $z=5-6$ is much steeper ($\alpha=-1.87_{-0.23}^{+0.30}$), suggesting that protocluster galaxies at $z > 5$ are more evolved, resembling those at $z=3.75-5$. The observed star formation rate density from H$\alpha$, integrated down to 0.45 ${\rm M_\odot yr^{-1}}$, is $0.050^{+0.002}_{-0.003}$ and $0.046^{+0.006}_{-0.004} M_\odot {\rm yr}^{-1} {\rm Mpc}^{-3}$ at $z=3.75-5$ and $z=5-6$, with protoclusters contributing $\sim$25% and 55%, respectively. This implies that a large fraction of star formation at $z > 4$ occurs in protoclusters. We conduct the first star-formation-rate-limited 3D clustering analysis at $z > 4$. We find the filamentary protocluster geometry flattens the power-law shape of the HAE auto-correlation functions, with slopes much shallower than typically assumed. The auto-correlation function of field HAEs have correlation lengths of $r_0 = 4.61^{+1.00}_{-0.68} h^{-1}{\rm Mpc}$ at $z \approx 4-5$ and $r_0 = 6.23^{+1.68}_{-1.13} h^{-1}{\rm Mpc}$ at $z=5-6$. Comparing the observed correlation functions with the UniverseMachine simulation, we infer the dark matter (sub-)halo masses of HAEs to be $\log (M_h/M_\odot)=11.0-11.2$ at $z\approx 4-6$, with a scatter of 0.4 dex.
Nature, Published online: 10 April 2025; doi:10.1038/d41586-025-01075-2
Heaviest known elementary particles and their antimatter counterparts are detected after nuclear smash-ups at the Large Hadron Collider.
How do the most luminous black holes accrete and expel gas?
The gravitational pull of a black hole attracts gas and forms an accretion disk where the interplay between hydromagnetic processes and the warping of space-time releases gravitational energy in the form of radiation, relativistic jets, and winds. Most gas falls into supermassive black holes when the accretion rate approaches the Eddington limit (L=Ledd), at which point radiation pressure overcomes gravity. To date, our knowledge of such `luminous’ black hole accretion disks mostly relies on semi-analytical models, supplemented by a limited set of numerical simulations. In my talk I will discuss new insights gained from state-of-the-art radiative general relativistic magnetohydrodynamics (GRMHD) simulations of accretion near the Eddington limit such as the formation of a hot corona, disk truncation, and other physical processes driving the spectral evolution of luminous black holes. I will finish my talk by discussing the challenges and opportunities the next-generation of GRMHD simulations will bring in developing a comprehensive understanding of black hole accretion across the luminosity spectrum.
Add to your calendar or Include in your list
arXiv:2412.02582v2 Announce Type: replace
Abstract: Neutral hydrogen (HI) intensity mapping (IM) presents great promise for future cosmological large-scale structure surveys. However, a major challenge for HIIM cosmological studies is to accurately subtract the foreground contamination. An accurate beam model is crucial for improving the quality of foreground subtraction. In this work, we develop a stacking-based beam reconstruction method utilizing the radio continuum point sources within the drift-scan field. Based on the Five-hundred-meter Aperture Spherical radio Telescope (FAST), we employ two sets of drift-scan survey data and merge the measurements to construct the beam patterns of the 19 FAST L-band feeds. To model the beams, we utilize the Zernike polynomial (ZP), which effectively captures asymmetric features of the main beam and the different side lobes. Due to the symmetric location of the beams, the main features of the beams are closely related to the distance from the center of the feed array, e.g., as the distance increases, side lobes become more pronounced. This modeling pipeline leverages the stable drift-scan data to extract beam patterns while accounting for and excluding the reflector's changing effects. It provides a more accurate measurement beam and a more precise model beam for FAST HIIM cosmology surveys.
arXiv:2504.06367v1 Announce Type: new
Abstract: This study sets new constraints on Cold+Warm Dark Matter (CWDM) models by leveraging the small-scale suppression of structure formation imprinted in the Lyman-$\alpha$ forest. Using the Sherwood-Relics suite, we extract high-fidelity flux power spectra from simulated Lyman-$\alpha$ forest data, spanning a broad range of cosmologies and thermal histories. This enables precise constraints on the warm dark matter (WDM) fraction, $f_{\mathrm{WDM}}$, and the mass of the WDM particle, $m_{\mathrm{WDM}}$. A key advancement of our analysis is the integration of a neural network emulator directly at the likelihood level, significantly accelerating Bayesian parameter inference. With new observations of high-redshift ($z$ = 4.2$-$5.0) quasar spectra from UVES and HIRES, we establish stringent upper limits: for $m_{\mathrm{WDM}}$ = 1 keV, we find $f_{\mathrm{WDM}} < 0.16$ (2$\sigma$), with constraints loosening to 35\%, 50\%, and 67\% for $m_{\mathrm{WDM}}$ = 2, 3, and 4 keV, respectively. Our results for pure WDM reaffirm the lower bounds of previous work. Crucially, we account for the fixed resolution of simulations and the impact of patchy reionization, demonstrating their minimal influence on mixed dark matter constraints. This robustness paves the way for tighter bounds with improved statistical samples in the future. Our findings suggest that CWDM models can naturally accommodate mild suppression of matter clustering in the high redshift Lyman-$\alpha$ forest 1D flux power, potentially offering a resolution to some of the ongoing cosmological tensions at low redshifts, namely the $S_{8}$ tension.
Growing pains: the dining habits of stars, planets and black holes
To make planets, stars and supermassive black holes, one must rapidly accrete material onto central objects. But the tiniest tangential motion combined with angular momentum conservation sends material into orbit, rather than accreting. Since work at the IoA in the 1970s we have understood that Nature solves the angular momentum problem by forming accretion discs, but the angular momentum transport mechanism remains unclear. The past 10 years have given us spectacular resolved observations of discs around both young and old stars, bringing fresh clues. In this talk I’ll explain how pairing 3D simulations with observations helps us solve the problem of accretion, revealing how stars and planets form, black holes grow and how accretion powers tidal disruption events.
Add to your calendar or Include in your list
arXiv:2504.05869v1 Announce Type: new
Abstract: 2003fg-like Type Ia supernovae (03fg-like SNe Ia) are a rare subtype of SNe Ia, photometrically characterized by broader optical light curves and bluer ultraviolet (UV) colors compared to normal SNe Ia. In this work, we study four 03fg-like SNe Ia using Swift UltraViolet and Optical Telescope (UVOT) grism observations to understand their unique UV properties and progenitor scenario(s). We report 03fg-like SNe Ia to have similar UV features and elemental compositions as normal SNe Ia, but with higher UV flux relative to optical. Previous studies have suggested that the UV flux levels of normal SNe Ia could be influenced by their progenitor properties, such as metallicity, with metal-poor progenitors producing higher UV flux levels. While 03fg-like SNe were previously reported to occur in low-mass and metal-poor host environments, our analysis indicates that their UV excess cannot be explained by their host-galaxy parameters. Instead, we demonstrate that the addition of a hot blackbody component, likely arising from the interaction with the circumstellar material (CSM), to the normal SN Ia spectrum, can reproduce their distinctive UV excess. This supports the hypothesis that 03fg-like SNe Ia could explode in a CSM-rich environment.
An investigation of the changing behaviour of a single quantum bit through time has uncovered a tantalising similarity to the geometry of three-dimensional space