Tue 01 Jul 11:15: Title TBC
The presentation will open with some reflections on the early part of the Square Kilometre Array (SKA) project, where questions asked about engineering realities constraining science aspirations were raised. Early encounters between Scientists and Engineers considered Radio Frequency Interference (RFI) as one of the constraints. Some formative developments of this specific Radio Astronomy (RA) project, with a focus on the XDM , KAT7 and then MeerKAT in South Africa, will be introduced and related to unexpected RFI . The picture will then be widened to unpack an understanding of RFI and ElectroMagnetic Compatibility (EMC) for RA and science projects more generally. Two European examples will be considered. A short diversion into the language that EMC engineers use in RFI and what RA presents as uv-plane data will be taken.
- Speaker: Prof. Howard Reader
- Tuesday 01 July 2025, 11:15-12:00
- Venue: Coffee area, Battcock Centre.
- Series: Hills Coffee Talks; organiser: Charles Walker.
A Bayesian approach to modelling spectrometer data chromaticity corrected using beam factors -- II. Model priors and posterior odds
An iterative CMB lensing estimator minimizing instrumental noise bias
The Atacama Cosmology Telescope: DR6 Power Spectra, Likelihoods and $\Lambda$CDM Parameters
The Atacama Cosmology Telescope: DR6 Constraints on Extended Cosmological Models
Euclid: An emulator for baryonic effects on the matter bispectrum
Tue 24 Jun 13:15: Earth, a Cosmic Spectacle
Louise Beer, IoA Artist in Residence, will share a presentation that considers the philosophical impacts of dark skies, and how having access to them can help us to understand better loss and grief, our individual connection to the deep time history of Earth and the Universe, and the cosmic significance of the climate crisis. Louise will share her 2024 British Council-funded project, Earth, a Cosmic Spectacle which was developed in collaboration with astronomer Dr Ian Griffin and Tūhura Otago Museum in Aotearoa New Zealand. In this project, the artist invited astronomers, biologists, and geologists to gaze into the dark skies of New Zealand and anonymously write a letter exploring how their knowledge of Earth’s long and gradual development, starting from the dawn of the Universe, shapes their understanding of the cosmic significance of the climate crisis.
- Speaker: Louise Beer
- Tuesday 24 June 2025, 13:15-13:45
- Venue: Hoyle Lecture theatre + Zoom .
- Series: Institute of Astronomy Seminars; organiser: Cristiano Longarini.
The Simons Observatory: Validation of reconstructed power spectra from simulated filtered maps for the Small Aperture Telescope survey
Cosmological constraints from the cross-correlation of DESI Luminous Red Galaxies with CMB lensing from Planck PR4 and ACT DR6
Why are the physical constants of the universe so perfect for life?
Tue 01 Jul 11:15: Title TBC
The presentation will open with some reflections on the early part of the Square Kilometre Array (SKA) project, where questions asked about engineering realities constraining science aspirations were raised. Early encounters between Scientists and Engineers considered Radio Frequency Interference (RFI) as one of the constraints. Some formative developments of this specific Radio Astronomy (RA) project, with a focus on the XDM , KAT7 and then MeerKAT in South Africa, will be introduced and related to unexpected RFI . The picture will then be widened to unpack an understanding of RFI and ElectroMagnetic Compatibility (EMC) for RA and science projects more generally. Two European examples will be considered. A short diversion into the language that EMC engineers use in RFI and what RA presents as uv-plane data will be taken.
- Speaker: Prof. Howard Reader
- Tuesday 01 July 2025, 11:15-12:00
- Venue: Coffee area, Battcock Centre.
- Series: Hills Coffee Talks; organiser: Charles Walker.
The THESAN-ZOOM project: Population III star formation continues until the end of reionization
Cosmic signal from the very early universe will help astronomers detect the first stars
Now, an international group of astronomers led by the University of Cambridge have shown that we will be able to learn about the masses of the earliest stars by studying a specific radio signal – created by hydrogen atoms filling the gaps between star-forming regions – originating just a hundred million years after the Big Bang.
By studying how the first stars and their remnants affected this signal, called the 21-centimetre signal, the researchers have shown that future radio telescopes will help us understand the very early universe, and how it transformed from a nearly homogeneous mass of mostly hydrogen to the incredible complexity we see today. Their results are reported in the journal Nature Astronomy.
“This is a unique opportunity to learn how the universe’s first light emerged from the darkness,” said co-author Professor Anastasia Fialkov from Cambridge’s Institute of Astronomy. “The transition from a cold, dark universe to one filled with stars is a story we’re only beginning to understand.”
The study of the universe’s most ancient stars hinges on the faint glow of the 21-centimetre signal, a subtle energy signal from over 13 billion years ago. This signal, influenced by the radiation from early stars and black holes, provides a rare window into the universe’s infancy.
Fialkov leads the theory group of REACH (the Radio Experiment for the Analysis of Cosmic Hydrogen). REACH is a radio antenna and is one of two major projects that could help us learn about the Cosmic Dawn and the Epoch of Reionisation, when the first stars reionised neutral hydrogen atoms in the universe.
Although REACH, which captures radio signals, is still in its calibration stage, it promises to reveal data about the early universe. Meanwhile, the Square Kilometre Array (SKA)—a massive array of antennas under construction—will map fluctuations in cosmic signals across vast regions of the sky.
Both projects are vital in probing the masses, luminosities, and distribution of the universe's earliest stars. In the current study, Fialkov – who is also a member of the SKA – and her collaborators developed a model that makes predictions for the 21-centimetre signal for both REACH and SKA, and found that the signal is sensitive to the masses of first stars.
“We are the first group to consistently model the dependence of the 21-centimetre signal of the masses of the first stars, including the impact of ultraviolet starlight and X-ray emissions from X-ray binaries produced when the first stars die,” said Fialkov, who is also a member of Cambridge’s Kavli Institute for Cosmology. “These insights are derived from simulations that integrate the primordial conditions of the universe, such as the hydrogen-helium composition produced by the Big Bang.”
In developing their theoretical model, the researchers studied how the 21-centimetre signal reacts to the mass distribution of the first stars, known as Population III stars. They found that previous studies have underestimated this connection as they did not account for the number and brightness of X-ray binaries – binary systems made of a normal star and a collapsed star – among Population III stars, and how they affect the 21-centimetre signal.
Unlike optical telescopes like the James Webb Space Telescope, which capture vivid images, radio astronomy relies on statistical analysis of faint signals. REACH and SKA will not be able to image individual stars, but will instead provide information about entire populations of stars, X-ray binary systems and galaxies.
“It takes a bit of imagination to connect radio data to the story of the first stars, but the implications are profound,” said Fialkov.
“The predictions we are reporting have huge implications for our understanding of the nature of the very first stars in the Universe,” said co-author Dr Eloy de Lera Acedo, Principal Investigator of the REACH telescope and PI at Cambridge of the SKA development activities. “We show evidence that our radio telescopes can tell us details about the mass of those first stars and how these early lights may have been very different from today’s stars.
“Radio telescopes like REACH are promising to unlock the mysteries of the infant Universe, and these predictions are essential to guide the radio observations we are doing from the Karoo, in South Africa.”
The research was supported in part by the Science and Technology Facilities Council (STFC), part of UK Research and Innovation (UKRI). Anastasia Fialkov is a Fellow of Magdalene College, Cambridge. Eloy de Lera Acedo is an STFC Ernest Rutherford Fellow and a Fellow of Selwyn College, Cambridge.
Reference:
T. Gessey-Jones et al. ‘Determination of the mass distribution of the first stars from the 21-cm signal.’ Nature Astronomy (2024). DOI: 10.1038/s41550-025-02575-x
Understanding how the universe transitioned from darkness to light with the formation of the first stars and galaxies is a key turning point in the universe’s development, known as the Cosmic Dawn. However, even with the most powerful telescopes, we can’t directly observe these earliest stars, so determining their properties is one of the biggest challenges in astronomy.
This is a unique opportunity to learn how the universe’s first light emerged from the darknessAnastasia FialkovESA/Webb, NASA, ESA, CSAThe image shows a deep galaxy field, featuring thousands of galaxies of various shapes and sizes
The text in this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Images, including our videos, are Copyright ©University of Cambridge and licensors/contributors as identified. All rights reserved. We make our image and video content available in a number of ways – on our main website under its Terms and conditions, and on a range of channels including social media that permit your use and sharing of our content under their respective Terms.
JADES and BlackTHUNDER: rest-frame Balmer-line absorption and the local environment in a Little Red Dot at z = 5
Tue 01 Jul 11:30: WST: science. status and plans
The wide-field spectroscopic telescope (WST) will be an innovative 12-m class telescope with simultaneous operation of a large field-of-view (3 sq. degree) and high multiplex (30,000) multi-object spectrograph facility with both medium and high resolution modes (MOS), and a giant panoramic (3×3 sq. arcmin) integral field spectrograph (IFS). WST will achieve transformative results in most areas of astrophysics: e.g. the nature and expansion of the dark Universe, the formation of first stars and galaxies and their role in the cosmic reionisation, the study of the dark and baryonic material in the cosmic web, the baryon cycle in galaxies, the formation history of the Milky Way and dwarf galaxies in the Local Group, characterization of exoplanet hosts, and the characterization of transient phenomena, including electromagnetic counterparts of gravitational wave events.
This presentation will discuss current science, status and plans.
- Speaker: Prof Roland Bacon (CRAL, Lyon, FR and WST Collaboration Coordinator)
- Tuesday 01 July 2025, 11:30-12:30
- Venue: Martin Ryle Seminar Room, Kavli Building.
- Series: Institute of Astronomy Colloquia; organiser: eb694.
Impact of Galactic non-Gaussian foregrounds on CMB lensing measurements
Extreme AGN feedback in the fossil galaxy group SDSSTG 4436
Overmassive black holes in the early Universe can be explained by gas-rich, dark matter-dominated galaxies
Fri 20 Jun 11:30: Nucleosynthesis at the isotopic level: how chemical abundances enhance our understanding of globular clusters and dwarf galaxies
In the context of hierarchical galaxy assembly, both globular clusters and dwarf galaxies serve as indispensable probes of the formation of our Milky Way. The chemical composition of stars within these ancient structures plays a pivotal role in constraining their chemical enrichment history. To date, most studies have focused almost exclusively on elemental abundances, however, nucleosynthesis operates at the isotopic level. This talk will discuss how Mg isotope ratios shed light on both the accreted dwarf galaxy component of our Milky Way and the light element enhanced populations within globular clusters. This reveals contributions from supernova and low-mass stars that cannot be discerned through element abundances alone.
- Speaker: Madeleine McKenzie (Carnegie)
- Friday 20 June 2025, 11:30-12:30
- Venue: Ryle Seminar Room, KICC + online.
- Series: Galaxies Discussion Group; organiser: Sandro Tacchella.