Double black hole mergers in nuclear star clusters: eccentricities, spins, masses, and the growth of massive seeds
We investigate the formation of intermediate-mass black holes (IMBHs) through hierarchical mergers of stellar-origin black holes (BHs), as well as BH mergers formed dynamically in nuclear star clusters. Using a semi-analytical approach that incorporates probabilistic, mass-function–dependent double-BH (DBH) pairing, binary–single encounters, and a mass-ratio–dependent prescription for energy dissipation in hardening binaries, we find that IMB Hs with masses of order 10²–10⁴ M⊙ can be formed solely through hierarchical mergers on timescales of a few hundred Myr to a few Gyr. Clusters with escape velocities ≳ 400 km s⁻¹ inevitably form high-mass IMB Hs. The spin distribution of IMB Hs with masses ≳ 10³ M⊙ is strongly clustered at χ ≈ 0.15, while for lower masses it peaks at χ ≈ 0.7. Eccentric mergers are more frequent for equal-mass binaries containing first- and second-generation BHs. Metal-rich, young, dense clusters can produce up to 20 of their DBH mergers with eccentricity ≥ 0.1 at 10 Hz, and ~ 2–9 of all in-cluster mergers form at > 10 Hz. Nuclear star clusters are therefore promising environments for the formation of highly eccentric DBH mergers, detectable with current gravitational-wave detectors. Clusters of extreme mass (∼ 10⁸ M⊙) and density (∼ 10⁸ M⊙ pc⁻³) can have about half of their DBH mergers with primary masses ≥ 100 M⊙. The fraction of in-cluster mergers increases rapidly with increasing escape velocity, approaching unity for Vesc ≳ 200 km s⁻¹. The cosmological DBH merger rate from nuclear clusters varies from ≲ 0.01 to 1 Gpc⁻³ yr⁻¹, where the large uncertainties stem from cluster initial conditions, number-density distributions, and the redshift evolution of nucleated galaxies.
Add to your calendar or Include in your list
arXiv:2506.22999v1 Announce Type: new
Abstract: The recent measurement of baryonic acoustic oscillations (BAO) by the Dark Energy Spectroscopic Instrument (DESI) reveals a mild tension with observations of the cosmic microwave background (CMB) within the standard $\Lambda$CDM cosmological model. This discrepancy leads to a preference for a total neutrino mass that is lower than the minimum value inferred from neutrino oscillation experiments. Alternatively, this tension can be eased within $\Lambda$CDM by assuming a higher optical depth ($\tau \simeq 0.09$), but such a value conflicts with large-scale CMB polarization data. We point out that cosmic birefringence, as suggested by recent Planck reanalyses, resolves this discrepancy if the birefringence angle varies significantly during reionization. Specifically, we consider the fact that the measured cosmic birefringence angle $\beta_0=0.34\pm0.09\,(1\,\sigma)\,$deg has the phase ambiguity, i.e., the measured rotation angle is described by $\beta=\beta_0+180n\,$deg ($n\in \mathbb{Z}$). We show that cosmic birefringence induced by axion-like particles with nonzero $n$ suppresses the reionization bump, allowing a higher $\tau$ consistent with data. We provide a viable parameter space where the birefringence effect simultaneously accounts for the low-$\ell$ polarization spectra, the Planck $EB$ correlations, and the elevated value of $\tau$, suggesting a key role for cosmic birefringence in current cosmological tensions.
arXiv:2401.10328v2 Announce Type: replace
Abstract: The spectra of high-redshift ($z\gtrsim 6$) quasars contain valuable information on the progression of the Epoch of Reionization (EoR). At redshifts $z<6$, the observed Lyman-series forest shows that the intergalactic medium (IGM) is nearly ionized, while at $z>7$ the observed quasar damping wings indicate high neutral gas fractions. However, there remains a gap in neutral gas fraction constraints at $6\lesssim z \lesssim 7$ where the Lyman series forest becomes saturated but damping wings have yet to fully emerge. In this work, we use a sample of 18 quasar spectra at redshifts $6.0
arXiv:2506.22147v1 Announce Type: new
Abstract: JWST has revealed a large population of active galactic nuclei (AGN) in the distant universe, which are challenging our understanding of early massive black hole seeding and growth. We expand the exploration of this population to lower luminosities by stacking $\sim 600$ NIRSpec grating spectra from the JWST Advanced Deep Extragalactic Survey (JADES) at $3
arXiv:2410.14404v3 Announce Type: replace
Abstract: According to CMB measurements, baryonic matter constitutes about $5\%$ of the mass-energy density of the universe. A significant population of these baryons, for a long time referred to as `missing', resides in a low density, warm-hot intergalactic medium (WHIM) outside galaxy clusters, tracing the ``cosmic web'', a network of large scale dark matter filaments. Various studies have detected this inter-cluster gas, both by stacking and by observing individual filaments in compact, massive systems. In this paper, we study short filaments (< 10 Mpc) connecting massive clusters ($M_{500} \approx 3\times 10^{14} M_{\odot}$) detected by the Atacama Cosmology Telescope (ACT) using the scattering of CMB light off the ionised gas, a phenomenon known as the thermal Sunyaev-Zeldovich (tSZ) effect. The first part of this work is a search for suitable candidates for high resolution follow-up tSZ observations. We identify four cluster pairs with an intercluster signal above the noise floor (S/N $>$ 2), including two with a tentative $>2\sigma$ statistical significance for an intercluster bridge from the ACT data alone. In the second part of this work, starting from the same cluster sample, we directly stack on ${\sim}100$ cluster pairs and observe an excess SZ signal between the stacked clusters of $y=(7.2^{+2.3}_{-2.5})\times 10^{-7}$ with a significance of $3.3\sigma$. It is the first tSZ measurement of hot gas between clusters in this range of masses at moderate redshift ($\langle z\rangle\approx 0.5$). We compare this to the signal from simulated cluster pairs with similar redshifts and separations in the THE300 and MAGNETICUM Pathfinder cosmological simulations and find broad consistency. Additionally, we show that our measurement is consistent with scaling relations between filament parameters and mass of the embedded halos identified in simulations.
arXiv:2503.02927v2 Announce Type: replace
Abstract: We investigate the impact of ionizing external ultraviolet (UV) radiation on low-mass haloes ($M_{h}<10^{10}M_\odot$) at high redshift using $1140M_\odot$ baryonic resolution zoom-in simulations of seven regions from the THESAN-ZOOM project. We compare three simulation sets that differ in the treatment of external UV radiation: one employing a uniform UV background initiated at z=10.6 in addition to radiation transport for local sources, another with the same background starting at z=5.5, and the default configuration in which the large-scale radiation field from the parent THESAN-1 simulation box acts as a boundary condition. The multi-phase interstellar medium (ISM) model, combined with its high mass resolution, allows us to resolve all star-forming haloes and capture the back-reaction of ionizing radiation on galaxy properties during the epoch of reionization. When present, external UV radiation efficiently unbinds gas in haloes with masses below $10^9M_\odot$ and suppresses subsequent star formation. As a result, in simulations with early reionization, minihaloes fail to form stars from pristine gas, leading to reduced metal enrichment of gas later accreted by more massive haloes. Consequently, haloes with masses below $10^{10}M_\odot$ at all simulated epochs (z>3) exhibit lower metallicities and altered metallicity distributions. The more accurate and realistic shielding from external UV radiation, achieved through self-consistent radiative transfer, permits the existence of a cold but low-density gas phase down to z=3. These findings highlight the importance of capturing a patchy reionization history in high-resolution simulations targeting high-redshift galaxy formation. We conclude that at minimum, a semi-numerical model that incorporates spatially inhomogeneous reionization and a non-uniform metallicity floor is necessary to accurately emulate metal enrichment in minihaloes.
arXiv:2506.20824v1 Announce Type: new
Abstract: We present constraints on isotropic cosmic birefringence induced by axion-like particles (ALPs), derived from the analysis of cosmic microwave background (CMB) polarization measurements obtained with the high-frequency channels of Planck. Recent measurements report a hint of isotropic cosmic birefringence, though its origin remains uncertain. The detailed dynamics of ALPs can leave characteristic imprints on the shape of the $EB$ angular power spectrum, which can be exploited to constrain specific models of cosmic birefringence. We first construct a multi-frequency likelihood that incorporates an intrinsic nonzero $EB$ power spectrum. We also show that the likelihood used in previous studies can be further simplified without loss of generality. Using this framework, we simultaneously constrain the ALP model parameters, the instrumental miscalibration angle, and the amplitudes of the $EB$ power spectrum of a Galactic dust foreground model. We find that, if ALPs are responsible for the observed cosmic birefringence, ALP masses at $\log_{10}m_{\phi}[{\rm eV}]\simeq-27.8$, $-27.5$, $-27.3$, $-27.2$, $-27.1$, as well as $\log_{10}m_{\phi}[{\rm eV}]\in[-27.0,-26.5]$, are excluded at more than $2\,\sigma$ statistical significance.
The Most Ambitious Radio Astronomy Endeavour of the 21st Century? Science, Technology and Engineering Dialogues in a Large-scale Project
The presentation will open with some reflections on the early part of the Square Kilometre Array (SKA) project, where questions asked about engineering realities constraining science aspirations were raised. Early encounters between Scientists and Engineers considered Radio Frequency Interference (RFI) as one of the constraints. Some formative developments of this specific Radio Astronomy (RA) project, with a focus on the XDM , KAT7 and then MeerKAT in South Africa, will be introduced and related to unexpected RFI . The picture will then be widened to unpack an understanding of RFI and ElectroMagnetic Compatibility (EMC) for RA and science projects more generally. Two European examples will be considered. A short diversion into the language that EMC engineers use in RFI and what RA presents as uv-plane data will be taken.
Add to your calendar or Include in your list
Title TBC
The presentation will open with some reflections on the early part of the Square Kilometre Array (SKA) project, where questions asked about engineering realities constraining science aspirations were raised. Early encounters between Scientists and Engineers considered Radio Frequency Interference (RFI) as one of the constraints. Some formative developments of this specific Radio Astronomy (RA) project, with a focus on the XDM , KAT7 and then MeerKAT in South Africa, will be introduced and related to unexpected RFI . The picture will then be widened to unpack an understanding of RFI and ElectroMagnetic Compatibility (EMC) for RA and science projects more generally. Two European examples will be considered. A short diversion into the language that EMC engineers use in RFI and what RA presents as uv-plane data will be taken.
Add to your calendar or Include in your list
arXiv:2506.20042v1 Announce Type: new
Abstract: The reliable detection of the global 21-cm signal, a key tracer of Cosmic Dawn and the Epoch of Reionization, requires meticulous data modelling and robust statistical frameworks for model validation and comparison. In Paper I of this series, we presented the Beam-Factor-based Chromaticity Correction (BFCC) model for spectrometer data processed using BFCC to suppress instrumentally induced spectral structure. We demonstrated that the BFCC model, with complexity calibrated by Bayes factor-based model comparison (BFBMC), enables unbiased recovery of a 21-cm signal consistent with the one reported by EDGES from simulated data. Here, we extend the evaluation of the BFCC model to lower amplitude 21-cm signal scenarios where deriving reliable conclusions about a model's capacity to recover unbiased 21-cm signal estimates using BFBMC is more challenging. Using realistic simulations of chromaticity-corrected EDGES-low spectrometer data, we evaluate three signal amplitude regimes -- null, moderate, and high. We then conduct a Bayesian comparison between the BFCC model and three alternative models previously applied to 21-cm signal estimation from EDGES data. To mitigate biases introduced by systematics in the 21-cm signal model fit, we incorporate the Bayesian Null-Test-Evidence-Ratio (BaNTER) validation framework and implement a Bayesian inference workflow based on posterior odds of the validated models. We demonstrate that, unlike BFBMC alone, this approach consistently recovers 21-cm signal estimates that align with the true signal across all amplitude regimes, advancing robust global 21-cm signal detection methodologies.
arXiv:2506.20667v1 Announce Type: new
Abstract: Noise maps from CMB experiments are generally statistically anisotropic, due to scanning strategies, atmospheric conditions, or instrumental effects. Any mis-modeling of this complex noise can bias the reconstruction of the lensing potential and the measurement of the lensing power spectrum from the observed CMB maps. We introduce a new CMB lensing estimator based on the maximum a posteriori (MAP) reconstruction that is minimally sensitive to these instrumental noise biases. By modifying the likelihood to rely exclusively on correlations between CMB map splits with independent noise realizations, we minimize auto-correlations that contribute to biases. In the regime of many independent splits, this maximum closely approximates the optimal MAP reconstruction of the lensing potential. In simulations, we demonstrate that this method is able to determine lensing observables that are immune to any noise mis-modeling with a negligible cost in signal-to-noise ratio. Our estimator enables unbiased and nearly optimal lensing reconstruction for next-generation CMB surveys.
arXiv:2503.14452v2 Announce Type: replace
Abstract: We present power spectra of the cosmic microwave background (CMB) anisotropy in temperature and polarization, measured from the Data Release 6 maps made from Atacama Cosmology Telescope (ACT) data. These cover 19,000 deg$^2$ of sky in bands centered at 98, 150 and 220 GHz, with white noise levels three times lower than Planck in polarization. We find that the ACT angular power spectra estimated over 10,000 deg$^2$, and measured to arcminute scales in TT, TE and EE, are well fit by the sum of CMB and foregrounds, where the CMB spectra are described by the $\Lambda$CDM model. Combining ACT with larger-scale Planck data, the joint P-ACT dataset provides tight limits on the ingredients, expansion rate, and initial conditions of the universe. We find similar constraining power, and consistent results, from either the Planck power spectra or from ACT combined with WMAP data, as well as from either temperature or polarization in the joint P-ACT dataset. When combined with CMB lensing from ACT and Planck, and baryon acoustic oscillation data from DESI DR1, we measure a baryon density of $\Omega_b h^2=0.0226\pm0.0001$, a cold dark matter density of $\Omega_c h^2=0.118\pm0.001$, a Hubble constant of $H_0=68.22\pm0.36$ km/s/Mpc, a spectral index of $n_s=0.974\pm0.003$, and an amplitude of density fluctuations of $\sigma_8=0.813\pm0.005$. Including the DESI DR2 data tightens the Hubble constant to $H_0=68.43\pm0.27$ km/s/Mpc; $\Lambda$CDM parameters agree between the P-ACT and DESI DR2 data at the $1.6\sigma$ level. We find no evidence for excess lensing in the power spectrum, and no departure from spatial flatness. The contribution from Sunyaev-Zel'dovich (SZ) anisotropy is detected at high significance; we find evidence for a tilt with suppressed small-scale power compared to our baseline SZ template spectrum, consistent with hydrodynamical simulations with feedback.
arXiv:2503.14454v2 Announce Type: replace
Abstract: We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from Planck. To break geometric degeneracies, we include ACT and Planck CMB lensing data and baryon acoustic oscillation data from DESI Year-1, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral index $d n_s/d\ln k = 0.0062 \pm 0.0052$) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming ($N_{\rm eff} = 2.86 \pm 0.13$, which combined with external BBN data becomes $N_{\rm eff} = 2.89 \pm 0.11$), for non-zero neutrino masses ($\sum m_\nu < 0.082$ eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation ($N_{\rm idr} < 0.134$), early-universe variation of fundamental constants, early dark energy, primordial magnetic fields, or modified recombination. Our data are consistent with standard BBN, the FIRAS-inferred CMB temperature, a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant, and the late-time growth rate predicted by general relativity. We find no statistically significant preference for a departure from the baseline $\Lambda$CDM model. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored by our data.
arXiv:2506.18974v1 Announce Type: new
Abstract: The Euclid mission and other next-generation large-scale structure surveys will enable high-precision measurements of the cosmic matter distribution. Understanding the impact of baryonic processes such as star formation and AGN feedback on matter clustering is crucial to ensure precise and unbiased cosmological inference. Most theoretical models of baryonic effects to date focus on two-point statistics, neglecting higher-order contributions. This work develops a fast and accurate emulator for baryonic effects on the matter bispectrum, a key non-Gaussian statistic in the nonlinear regime. We employ high-resolution $N$-body simulations from the BACCO suite and apply a combination of cutting-edge techniques such as cosmology scaling and baryonification to efficiently span a large cosmological and astrophysical parameter space. A deep neural network is trained to emulate baryonic effects on the matter bispectrum measured in simulations, capturing modifications across various scales and redshifts relevant to Euclid. We validate the emulator accuracy and robustness using an analysis of \Euclid mock data, employing predictions from the state-of-the-art FLAMINGO hydrodynamical simulations. The emulator reproduces baryonic suppression in the bispectrum to better than 2$\%$ for the $68\%$ percentile across most triangle configurations for $k \in [0.01, 20]\,h^{-1}\mathrm{Mpc}$ and ensures consistency between cosmological posteriors inferred from second- and third-order weak lensing statistics.
Earth, a Cosmic Spectacle
Louise Beer, IoA Artist in Residence, will share a presentation that considers the philosophical impacts of dark skies, and how having access to them can help us to understand better loss and grief, our individual connection to the deep time history of Earth and the Universe, and the cosmic significance of the climate crisis. Louise will share her 2024 British Council-funded project, Earth, a Cosmic Spectacle which was developed in collaboration with astronomer Dr Ian Griffin and Tūhura Otago Museum in Aotearoa New Zealand. In this project, the artist invited astronomers, biologists, and geologists to gaze into the dark skies of New Zealand and anonymously write a letter exploring how their knowledge of Earth’s long and gradual development, starting from the dawn of the Universe, shapes their understanding of the cosmic significance of the climate crisis.
Add to your calendar or Include in your list
arXiv:2502.00946v2 Announce Type: replace
Abstract: We present a transfer function-based method to estimate angular power spectra from filtered maps for cosmic microwave background (CMB) surveys. This is especially relevant for experiments targeting the faint primordial gravitational wave signatures in CMB polarisation at large scales, such as the Simons Observatory (SO) small aperture telescopes. While timestreams can be filtered to mitigate the contamination from low-frequency noise, usual methods that calculate the mode coupling at individual multipoles can be challenging for experiments covering large sky areas or reaching few-arcminute resolution. The method we present here, although approximate, is more practical and faster for larger data volumes. We validate it through the use of simulated observations approximating the first year of SO data, going from half-wave plate-modulated timestreams to maps, and using simulations to estimate the mixing of polarisation modes induced by an example of time-domain filtering. We show its performance through an example null test and with an end-to-end pipeline that performs inference on cosmological parameters, including the tensor-to-scalar ratio $r$. The performance demonstration uses simulated observations at multiple frequency bands. We find that the method can recover unbiased parameters for our simulated noise levels.
arXiv:2407.04607v2 Announce Type: replace
Abstract: We infer the growth of large scale structure over the redshift range $0.4\lesssim z \lesssim 1$ from the cross-correlation of spectroscopically calibrated Luminous Red Galaxies (LRGs) selected from the Dark Energy Spectroscopic Instrument (DESI) legacy imaging survey with CMB lensing maps reconstructed from the latest Planck and ACT data. We adopt a hybrid effective field theory (HEFT) model that robustly regulates the cosmological information obtainable from smaller scales, such that our cosmological constraints are reliably derived from the (predominantly) linear regime. We perform an extensive set of bandpower- and parameter-level systematics checks to ensure the robustness of our results and to characterize the uniformity of the LRG sample. We demonstrate that our results are stable to a wide range of modeling assumptions, finding excellent agreement with a linear theory analysis performed on a restricted range of scales. From a tomographic analysis of the four LRG photometric redshift bins we find that the rate of structure growth is consistent with $\Lambda$CDM with an overall amplitude that is $\simeq5-7\%$ lower than predicted by primary CMB measurements with modest $(\sim2\sigma)$ statistical significance. From the combined analysis of all four bins and their cross-correlations with Planck we obtain $S_8 = 0.765\pm0.023$, which is less discrepant with primary CMB measurements than previous DESI LRG cross Planck CMB lensing results. From the cross-correlation with ACT we obtain $S_8 = 0.790^{+0.024}_{-0.027}$, while when jointly analyzing Planck and ACT we find $S_8 = 0.775^{+0.019}_{-0.022}$ from our data alone and $\sigma_8 = 0.772^{+0.020}_{-0.023}$ with the addition of BAO data. These constraints are consistent with the latest Planck primary CMB analyses at the $\simeq 1.6-2.2\sigma$ level, and are in excellent agreement with galaxy lensing surveys.
Conditions in our little pocket of the universe seem to be just right for life - and the much-debated anthropic principle forces us to wonder why
Title TBC
The presentation will open with some reflections on the early part of the Square Kilometre Array (SKA) project, where questions asked about engineering realities constraining science aspirations were raised. Early encounters between Scientists and Engineers considered Radio Frequency Interference (RFI) as one of the constraints. Some formative developments of this specific Radio Astronomy (RA) project, with a focus on the XDM , KAT7 and then MeerKAT in South Africa, will be introduced and related to unexpected RFI . The picture will then be widened to unpack an understanding of RFI and ElectroMagnetic Compatibility (EMC) for RA and science projects more generally. Two European examples will be considered. A short diversion into the language that EMC engineers use in RFI and what RA presents as uv-plane data will be taken.
Add to your calendar or Include in your list
arXiv:2503.03806v2 Announce Type: replace
Abstract: Population III (Pop III) stars are the first stars in the Universe, forming from pristine, metal-free gas and marking the end of the cosmic dark ages. Their formation rate is expected to sharply decline after redshift $z \approx 15$ due to metal enrichment from previous generations of stars. In this paper, we analyze 14 zoom-in simulations from the THESAN-ZOOM project, which evolves different haloes from the THESAN-1 cosmological box down to redshift $z=3$. The high mass resolution of up to $142 M_\odot$ per cell in the gas phase combined with a multiphase model of the interstellar medium (ISM), radiative transfer including Lyman-Werner radiation, dust physics, and a non-equilibrium chemistry network that tracks molecular hydrogen, allows for a realistic but still approximate description of Pop III star formation in pristine gas. Our results show that Pop III stars continue to form in low-mass haloes ranging from $10^6 M_\odot$ to $10^9 M_\odot$ until the end of reionization at around $z=5$. At this stage, photoevaporation suppresses further star formation in these minihaloes, which subsequently merge into larger central haloes. Hence, the remnants of Pop III stars primarily reside in the satellite galaxies of larger haloes at lower redshifts. While direct detection of Pop III stars remains elusive, these results hint that lingering primordial star formation could leave observable imprints or indirectly affect the properties of high-redshift galaxies. Explicit Pop III feedback and specialized initial mass function modelling within the THESAN-ZOOM framework would further help interpreting emerging constraints from the James Webb Space Telescope.