Intrinsic alignment demographics for next-generation lensing: Revealing galaxy property trends with DESI Y1 direct measurements
The mysterious missing ingredient in the highest-energy cosmic rays
Nature, Published online: 15 July 2025; doi:10.1038/d41586-025-02227-0
Data from a South Pole observatory show that the fraction of protons in ultrahigh-energy cosmic rays is lower than expected.Alleviating the Hubble tension with Torsion Condensation (TorC)
Ruling out dominant electron scattering in Little Red Dots' Rosetta Stone using multiple hydrogen lines
The THESAN-ZOOM project: Mystery N/O more -- uncovering the origin of peculiar chemical abundances and a not-so-fundamental metallicity relation at $3<z<12$
CLASS_SZ II: Notes and Examples of Fast and Accurate Calculations of Halo Model, Large Scale Structure and Cosmic Microwave Background Observables
Wed 16 Jul 13:45: Direct Images of the Cosmic Web of Intergalactic and Circumgalactic Gas
The filamentary pattern in which the Universe’s matter concentrates, the cosmic web, is predicted by the ΛCDM cosmological model and contains the majority of the universe’s matter. Detailed mapping of this interconnected structure of gaseous filaments, galaxies, quasars, dark matter, and voids, is central to a comprehensive understanding of the origin and evolution of our Universe. I will describe very deep narrow band imaging observations obtained using the Condor Array Telescope in New Mexico, centered on the Cosmic Evolution Survey (COSMOS) field at a redshift of z=2.45. We use several hydrodynamical simulations to predict the cosmic web Lyman-alpha emission properties. The simulation results show good agreement with the Condor data, supporting the notion that Condor has detected wide-field cosmic web emission, potentially marking the beginning of a new field of cosmology – detailed baryonic and dark matter cartography of the diffuse Universe. I will describe the details of these data and simulations and then discuss the construction of a new Condor in the Atacama that will go even deeper and which we hope will see first light towards the end of 2025.
- Speaker: Oleksii Sokoliuk, Aberdeen University
- Wednesday 16 July 2025, 13:45-14:15
- Venue: Hoyle Lecture theatre + Zoom .
- Series: Institute of Astronomy Seminars; organiser: Cristiano Longarini.
Wed 16 Jul 13:15: Chasing the First Stars With Outliers
he OUTLIERS project aims to find and study the most ancient stars in our Galaxy — stars that formed shortly after the Big Bang. These stars carry unique chemical fingerprints that tell us about the very first generations of stars, the first supernovae, and the early stages of galaxy formation. Although extremely rare and faint, they can still be found today thanks to the combined power of Gaia — which maps the positions and motions of over a billion stars — and new large spectroscopic surveys like DESI , WEAVE, and 4MOST. OUTLIERS uses this data to select and follow up the most promising candidates. By studying these stellar fossils in detail, we hope to answer long-standing questions about how the first stars formed, what elements they created, and how the Universe evolved in its earliest phases.
- Speaker: David Aguado, Instituto de Astrofísica de Canarias
- Wednesday 16 July 2025, 13:15-13:45
- Venue: Hoyle Lecture theatre + Zoom .
- Series: Institute of Astronomy Seminars; organiser: Cristiano Longarini.
Wed 16 Jul 13:15: Chasing the First Stars With Outliers
he OUTLIERS project aims to find and study the most ancient stars in our Galaxy — stars that formed shortly after the Big Bang. These stars carry unique chemical fingerprints that tell us about the very first generations of stars, the first supernovae, and the early stages of galaxy formation. Although extremely rare and faint, they can still be found today thanks to the combined power of Gaia — which maps the positions and motions of over a billion stars — and new large spectroscopic surveys like DESI , WEAVE, and 4MOST. OUTLIERS uses this data to select and follow up the most promising candidates. By studying these stellar fossils in detail, we hope to answer long-standing questions about how the first stars formed, what elements they created, and how the Universe evolved in its earliest phases.
- Speaker: David Aguado, Instituto de Astrofísica de Canarias
- Wednesday 16 July 2025, 13:15-13:45
- Venue: Hoyle Lecture theatre + Zoom .
- Series: Institute of Astronomy Seminars; organiser: Cristiano Longarini.
We may have finally solved an ultra-high-energy cosmic ray puzzle
CLASS_SZ II: Notes and Examples of Fast and Accurate Calculations of Halo Model, Large Scale Structure and Cosmic Microwave Background Observables
Evaluating Retrieval-Augmented Generation Agents for Autonomous Scientific Discovery in Astrophysics
The cosmos is vast, so how do we measure it?
Fri 18 Jul 11:30: Dust grains across the universe: JWST and ALMA insights from cosmic noon to the early universe
Abstract not available
- Speaker: Irene Shivaei (CAB, Madrid)
- Friday 18 July 2025, 11:30-12:30
- Venue: Ryle Seminar Room, KICC + online.
- Series: Galaxies Discussion Group; organiser: Sandro Tacchella.
Wed 09 Jul 13:15: Double black hole mergers in nuclear star clusters: eccentricities, spins, masses, and the growth of massive seeds
We investigate the formation of intermediate-mass black holes (IMBHs) through hierarchical mergers of stellar-origin black holes (BHs), as well as BH mergers formed dynamically in nuclear star clusters. Using a semi-analytical approach that incorporates probabilistic, mass-function–dependent double-BH (DBH) pairing, binary–single encounters, and a mass-ratio–dependent prescription for energy dissipation in hardening binaries, we find that IMB Hs with masses of order 10²–10⁴ M⊙ can be formed solely through hierarchical mergers on timescales of a few hundred Myr to a few Gyr. Clusters with escape velocities ≳ 400 km s⁻¹ inevitably form high-mass IMB Hs. The spin distribution of IMB Hs with masses ≳ 10³ M⊙ is strongly clustered at χ ≈ 0.15, while for lower masses it peaks at χ ≈ 0.7. Eccentric mergers are more frequent for equal-mass binaries containing first- and second-generation BHs. Metal-rich, young, dense clusters can produce up to 20 of their DBH mergers with eccentricity ≥ 0.1 at 10 Hz, and ~ 2–9 of all in-cluster mergers form at > 10 Hz. Nuclear star clusters are therefore promising environments for the formation of highly eccentric DBH mergers, detectable with current gravitational-wave detectors. Clusters of extreme mass (∼ 10⁸ M⊙) and density (∼ 10⁸ M⊙ pc⁻³) can have about half of their DBH mergers with primary masses ≥ 100 M⊙. The fraction of in-cluster mergers increases rapidly with increasing escape velocity, approaching unity for Vesc ≳ 200 km s⁻¹. The cosmological DBH merger rate from nuclear clusters varies from ≲ 0.01 to 1 Gpc⁻³ yr⁻¹, where the large uncertainties stem from cluster initial conditions, number-density distributions, and the redshift evolution of nucleated galaxies.
- Speaker: Debatri Chattopadhyay
- Wednesday 09 July 2025, 13:15-13:45
- Venue: Hoyle Lecture theatre + Zoom .
- Series: Institute of Astronomy Seminars; organiser: Cristiano Longarini.
Fri 24 Oct 11:30: Title to be confirmed
Abstract not available
- Speaker: Michele Ginolfi (Florence)
- Friday 24 October 2025, 11:30-12:30
- Venue: Ryle Seminar Room, KICC + online.
- Series: Galaxies Discussion Group; organiser: Sandro Tacchella.
Fri 11 Jul 11:30: Unveiling the shape of the ionizing spectrum of galaxies
Abstract not available
- Speaker: Anne Verhamme (University of Geneva)
- Friday 11 July 2025, 11:30-12:30
- Venue: Ryle Seminar Room, KICC + online.
- Series: Galaxies Discussion Group; organiser: Sandro Tacchella.
JADES -- The small blue bump in GN-z11: insights into the nuclear region of a galaxy at z=10.6
Tue 08 Jul 11:15: Optimizing Data Delivery and Scalable HI Profile Classification for the SKA Era: Infrastructure and Science Challenges at the Spanish SRC
This talk presents ongoing work at the Spanish SKA Regional Centre (esSRC) in the context of the SRC Net 0.1. The first part focuses on the development of efficient data delivery techniques from the distributed Rucio-based storage system to the SRC infrastructure and, ultimately, to user workspaces. Several approaches have been evaluated to support science-ready access, yet current solutions often involve unnecessary data duplication in user areas, resulting in increased usage of storage and computational resources. To address this, we have prototyped mechanisms based on file linking, caching, and data reuse, enabling more efficient access paths for users. While these methods show promising improvements in terms of performance and resource usage, challenges remain, particularly in terms of orchestration, scalability, and compatibility with existing workload managers. The second part presents advances in the automated classification of neutral hydrogen (HI) profiles using machine learning methods, building on previous work [Parra et al., 2024, arXiv:2501.11657]. We outline a roadmap for extending these techniques to handle the data volumes expected from the SKA Observatory. This includes developing scalable pipelines capable of ingesting and processing large spectral datasets in a reproducible and efficient manner, and adapting the classification models to cope with the diversity and complexity of the SKA data products.
- Speaker: Dr. Manu Parra-Royón (Astrophysics Institute of Andalucia - Spanish National Research Council)
- Tuesday 08 July 2025, 11:15-12:00
- Venue: Coffee area, Battcock Centre.
- Series: Hills Coffee Talks; organiser: Charles Walker.
Molecular gas in a low-dust galaxy hints at how stars formed in the early Universe
Nature, Published online: 02 July 2025; doi:10.1038/d41586-025-01979-z
The James Webb Space Telescope has detected molecular hydrogen in a nearby galaxy that has a very low proportion of metals. This implies that considerable quantities of molecular gas can form at low metallicities, and provides insight into similarly metal-poor galaxies in the early Universe.