skip to content

Kavli Institute for Cosmology, Cambridge

 
Subscribe to Upcoming Talks feed
Description to be confirmed
Updated: 48 min 2 sec ago

Wed 04 Jun 13:40: GPU Accelerated Sampling and Model Comparison

5 hours 46 min ago
GPU Accelerated Sampling and Model Comparison

This talk introduces a natively vectorized implementation of the Nested Sampling algorithm, enabling deployment of the entire inference process onto GPUs for massive acceleration. I will start by reviewing the benefits, and necessity, of the paradigm shift towards vectorized compute in the physical sciences. After a brief review of the how (and why) of Bayesian inference in Astronomy and Cosmology, I will then explore the nuances and challenges of taking some of the widely used inference algorithms within this community, in particular nested sampling, to the GPU accelerated frontier. Lastly I’ll present some practical benefit that this speedup can bring and comment on how this technical development can help push the boundaries of what we can achieve in the physical sciences.

Add to your calendar or Include in your list

Tue 21 Oct 11:15: Title TBC

6 hours 22 min ago
Title TBC

Abstract TBC

  • Speaker: Dr. Weiyang Wang (University of Chinese Academy of Sciences)
  • Tuesday 21 October 2025, 11:15-12:00
  • Venue: TBC.
  • Series: Hills Coffee Talks; organiser: Charles Walker.

Add to your calendar or Include in your list

Tue 01 Jul 11:15: Title TBC

6 hours 58 min ago
Title TBC

Abstract TBC

Add to your calendar or Include in your list

Thu 05 Jun 12:00: Rapid accretion and state changes in strongly magnetised disks

7 hours 18 min ago
Rapid accretion and state changes in strongly magnetised disks

Accretion disks power many of the universe’s most luminous phenomena, acting as intermediaries that enable matter to shed angular momentum and accrete onto stars or compact objects. While angular momentum transport in disks has been extensively studied, especially in the context of magneto-rotational turbulence, significant challenges remain. These include reconciling simulation results with observed accretion rates and understanding state transitions in cataclysmic variables, x-ray binaries, and quasars.

In this talk, I explore how strongly magnetised disks — where azimuthal magnetic fields dominate, with energies exceeding the plasma’s thermal energy — may help resolve these issues. Interest in this regime is motivated by recent “hyper-refined” cosmological simulations, in which such a disk forms self-consistently around a black hole and supports super-Eddington accretion rates. Using local shearing-box simulations, we identify two distinct turbulent states: the previously known “high-β” state with modest accretion stresses (α << 1) and weak magnetic fields, and a new “low-β” state with strong, self-sustaining azimuthal magnetic fields, supersonic turbulence, and rapid accretion (α ≈ 1). The transition between these states is abrupt and occurs when sufficiently strong azimuthal fields are present, allowing the system to sustain a Parker-instability-driven dynamo. While many aspects of this behaviour remain uncertain, it offers a promising pathway to reconcile simulations and observations, with interesting implications for quasars and other rapidly accreting systems.

Add to your calendar or Include in your list

Tue 03 Jun 11:15: Prebiotic Chemistry, Exoplanets and Stellar Flaring

Thu, 29/05/2025 - 18:14
Prebiotic Chemistry, Exoplanets and Stellar Flaring

Nitroprusside is an important prebiotic molecule, thought to contribute to reaction pathways that lead to the production of amino acid chains (Mariani et al. [2018]). Nitroprusside can be made from Ferrocyanide photochemically. It has been found that the timescales for this reaction on Early Earth would have been between an order of days to months , making this route of abiotic production very useful in further prebiotic reaction networks and an important factor to consider when discussing the viability of life to evolve on a planet (Rimmer et al. [2021]). Here we investigate this reaction with a focus on constant and time varied radiation, meaning experimental runs involving the sample being subjected to a constant flux of UV light and runs with UV flux changing over time. FlareLab makes use of a broad band UV-Vis Laser Driven Light Source (LDLS), to experimentally simulate stellar irradiation and stellar flaring activity. The reasoning behind investigating flares is based on recent findings that have shown that M-dwarves are prone to flaring (G¨unther et al. [2020]). Flaring for M-dwarves is also shown to be the best way to get enough UV to an exoplanet’s surface for good yield of photochemical products (Ranjan et al. [2017]). With M-dwarves seen as the best stars to look at to detect small rocky planets, it is important to consider how flaring could effect the production of Nitroprusside and if there’s a discrepancy between assuming a constant irradiation of the surface or taking into account flaring.

We show that FlareLab can be used as a means of detecting the production of Nitroprusside in-situ during the irradiation period. We also compare the constant flux and variable flux regimes, and discuss the implications of these findings.

Add to your calendar or Include in your list

Thu 12 Jun 11:15: Title TBC

Thu, 29/05/2025 - 15:42
Title TBC

Abstract TBC

Add to your calendar or Include in your list

Wed 04 Jun 13:15: Geometric mixing models as a tool for investigating the ice shell of Europa

Thu, 29/05/2025 - 10:19
Geometric mixing models as a tool for investigating the ice shell of Europa

The presence of liquid water is vital to the understanding of a planetary body’s climate, geological history, and habitability. The use of ice-penetrating radar as a probe for subsurface hydrology has been demonstrated across Earth and nearby planetary bodies. Radar sounding has uncovered hundreds of subglacial lakes across the Antarctic and Greenland ice sheets, while a recent mission to Mars (MARSIS) found anomalously bright reflectances suggesting the presence of a subglacial lake at the South Polar Layered Deposits. The recently launched Europa Clipper is similarly equipped with an ice-penetrating radar instrument, REASON , which will search for evidence of liquid water on Europa as an indicator of habitability.

However, the uniqueness of reflectivity as an identifier for subglacial water bodies has recently been called into question: conductive sediments and brine inclusions in ice have been proposed as alternate hypotheses for the origin of water-like radar signals at Mars and the Devon ice cap. Conventional approaches to studying the effective permittivity of such mixtures assume an isotropic distribution; here we apply geometric mixing models to account for realistic, anisotropic brine geometries. We demonstrate how geometric mixing models can provide more exact constraints on the presence and geometric distribution of liquid water in Europa’s ice shell. We further discuss the detectability of the eutectic zone in the ice shell and its implications for its thermal structure.

Add to your calendar or Include in your list

Fri 30 May 13:00: Gravitational Wave Signatures of Dark Matter in Neutron Star Mergers

Wed, 28/05/2025 - 11:05
Gravitational Wave Signatures of Dark Matter in Neutron Star Mergers

Binary neutron star mergers provide insights into strong-field gravity and the properties of ultra-dense nuclear matter. These events offer the potential to search for signatures of physics beyond the standard model, including dark matter. We present the first numerical-relativity simulations of binary neutron star mergers admixed with dark matter, based on constraint-solved initial data. Modeling dark matter as a non-interacting fermionic gas, we investigate the impact of varying dark matter fractions and particle masses on the merger dynamics, ejecta mass, post-merger remnant properties, and the emitted gravitational waves. Our simulations suggest that the dark matter morphology – a dense core or a diluted halo – may alter the merger outcome. Scenarios with a dark matter core tend to exhibit a higher probability of prompt collapse, while those with a dark matter halo develop a common envelope, embedding the whole binary. Furthermore, gravitational wave signals from mergers with dark matter halo configurations exhibit significant deviations from standard models when the tidal deformability is calculated in a two-fluid framework neglecting the dilute and extended nature of the halo. This highlights the need for refined models in calculating the tidal deformability when considering mergers with extended dark matter structures. These initial results provide a basis for further exploration of dark matter’s role in binary neutron star mergers and their associated gravitational wave emission and can serve as a benchmark for future observations from advanced detectors and multi-messenger astrophysics.

Add to your calendar or Include in your list

Thu 05 Jun 14:00: Rapid accretion and state changes in strongly magnetised disks

Wed, 28/05/2025 - 10:19
Rapid accretion and state changes in strongly magnetised disks

Accretion disks power many of the universe’s most luminous phenomena, acting as intermediaries that enable matter to shed angular momentum and accrete onto stars or compact objects. While angular momentum transport in disks has been extensively studied, especially in the context of magneto-rotational turbulence, significant challenges remain. These include reconciling simulation results with observed accretion rates and understanding state transitions in cataclysmic variables, x-ray binaries, and quasars.

In this talk, I explore how strongly magnetised disks — where azimuthal magnetic fields dominate, with energies exceeding the plasma’s thermal energy — may help resolve these issues. Interest in this regime is motivated by recent “hyper-refined” cosmological simulations, in which such a disk forms self-consistently around a black hole and supports super-Eddington accretion rates. Using local shearing-box simulations, we identify two distinct turbulent states: the previously known “high-β” state with modest accretion stresses (α << 1) and weak magnetic fields, and a new “low-β” state with strong, self-sustaining azimuthal magnetic fields, supersonic turbulence, and rapid accretion (α ≈ 1). The transition between these states is abrupt and occurs when sufficiently strong azimuthal fields are present, allowing the system to sustain a Parker-instability-driven dynamo. While many aspects of this behaviour remain uncertain, it offers a promising pathway to reconcile simulations and observations, with interesting implications for quasars and other rapidly accreting systems.

Add to your calendar or Include in your list

Fri 18 Jul 11:30: Title to be confirmed

Tue, 27/05/2025 - 18:13
Title to be confirmed

Abstract not available

Add to your calendar or Include in your list

Mon 16 Jun 14:00: Free floating planets and their possible origins

Tue, 27/05/2025 - 17:40
Free floating planets and their possible origins

In recent years, free floating planets, i.e. those planets not found to be in a planetary system and with no observable companions, have begun to be found in microlensing and direct imaging surveys. Observations have shown that they have a wide variety of masses, ranging from terrestrial-like to giant planets. Microlensing surveys predict that there could be on order tens of free floating planets per star in the Milky Way. How these planets form and arrive on their observed trajectories remains a very open and intriguing question.

Whilst there are many mechanisms for forming free floating planets, e.g. ejections from planet-planet interactions or gravitational collapse of gas within molecular clouds, very few models have predicted the properties of free floating planets on a global scale. In this talk I will present the outcomes of state-of-the-art circumbinary planet formation models, that naturally produce a large abundance free floating planets per system. I will show the resulting mass and velocity distributions arising from the models, which will then be extended to include stellar populations of both single and binary stars, taking into binary fractions, and separations. The population distributions show clear observable features that can be investigated by future missions such as Roman, where evidence of these features will directly point to the specific formation pathways of specific planets, as well as informing on the processes of the planet forming environment in which they originated.

Add to your calendar or Include in your list

Thu 05 Jun 14:00: Title to be confirmed

Tue, 27/05/2025 - 15:15
Title to be confirmed

Abstract not available

Add to your calendar or Include in your list

Wed 28 May 13:15: Inward (or outward?) migration of massive planets in protoplanetary discs

Mon, 26/05/2025 - 09:46
Inward (or outward?) migration of massive planets in protoplanetary discs

According to the classical picture, type II migration is a slow, inward motion of the planet that either follows the disc viscous evolution (disc-dominated regime) or is much slower than that (planet-dominated regime). However, over the last decade, this picture of type II migration has significantly evolved, suggesting faster migration in the disc-dominated regime and even outward migration in the planet-dominated regime. In this talk, I will present recent results exploring the planet-dominated regime via live-planet, long-term simulations of planet migration. These show the existence of a correlation between the “gap-depth parameter” K and the direction of planet migration: planets migrate outward or inward depending on whether K is above or below a critical threshold Klim. This also implies the existence of “stalling radius” where migration halts. Using these results, I will introduce a toy model that allows to predict that massive planets accumulate in a band near the stalling radius (typically between 1–10 au), offering an explanation for the observed distribution of Jupiter-like exoplanets while challenging classical models of hot Jupiter formation.

Add to your calendar or Include in your list

Wed 28 May 13:40: Shamrock: SPH and more, from a laptop to Exascale.

Mon, 26/05/2025 - 09:46
Shamrock: SPH and more, from a laptop to Exascale.

We introduce Shamrock, a performance-portable framework written in C++17, targeting CPU and GPUs from any vendors using the SYCL programming standard, designed for numerical astrophysics across a wide range of hardware, from laptops to Exascale systems. Astrophysical schemes often share a common structure: a combination of neighbor searching and the numerical scheme itself. Shamrock embraces such abstractions to provide a common framework for multiple hydrodynamical schemes, namely finite elements, finite volume (with adaptive mesh refinement), and Smoothed Particle Hydrodynamics. To achieve this, at its core, Shamrock features a highly optimized, parallel tree algorithm with negligible construction overhead. This tree structure is coupled with a domain decomposition strategy that enables near-linear weak scalability across multiple GPUs. Shamrock achieves 92% weak scaling efficiency on 1024 AMD M I250x GPUs in large-scale Smoothed Particle Hydrodynamics (SPH) simulations. This corresponds to processing billions of particles per second, with tens of millions of particles handled per GPU , allowing us to perform the first SPH simulations above the billion-particle mark for protoplanetary discs.

Add to your calendar or Include in your list

Tue 27 May 11:15: Bayesian anomaly detection for Cosmology - 21cm, Supernovae, and beyond

Sat, 24/05/2025 - 12:20
Bayesian anomaly detection for Cosmology - 21cm, Supernovae, and beyond

We introduce a unified Bayesian anomaly-detection framework for Cosmology, applied to the REACH global 21cm probe and also Type Ia supernovae. This approach embeds data-integrity beliefs directly into the inference process. Rather than excising contaminated or anomalous data points, the method employs a piecewise likelihood constrained by a Bernoulli prior and an Occam penalty, allowing anomalies to be down-weighted automatically while performing numerical sampling for parameter inference. When applied to supernova light curves, the framework yields precise estimates of brightness scaling, stretch, and colour, while also automating supernova sample and band selection. In the context of global 21 cm cosmology, it offers a principled way to mitigate radio-frequency interference (RFI), particularly within the band of interest. We also discuss additional potential applications of this methodology.

Add to your calendar or Include in your list

Fri 13 Jun 11:30: The Dynamics of Debris Disk Creation in Neutron Star Mergers

Fri, 23/05/2025 - 17:17
The Dynamics of Debris Disk Creation in Neutron Star Mergers

The detection of GW170817 /AT2017gfo inaugurated an era of multimessenger astrophysics, in which gravitational-wave and multiwavelength photon observations complement one another to provide unique insight into astrophysical systems. A broad theoretical consensus exists, in which the photon phenomenology of neutron star mergers largely rests upon the evolution of the small amount of matter left on bound orbits around the black hole or massive neutron star remaining after the merger. Because this accretion disk is far from inflow equilibrium, its subsequent evolution depends very strongly on its initial state, yet very little is known about how this state is determined. Using both snapshot and tracer particle data from a numerical relativity/MHD simulation of an equal-mass neutron star merger that collapses to a black hole, we show how gravitational forces arising in a nonaxisymmetric, dynamical spacetime supplement hydrodynamical effects in shaping the initial structure of the bound debris disk. The work done by hydrodynamical forces is ∼10 times greater than that due to time-dependent gravity. Although gravitational torques prior to remnant relaxation are an order of magnitude larger than hydrodynamical torques, their intrinsic sign symmetry leads to strong cancellation; as a result, hydrodynamical and gravitational torques have a comparable effect. We also show that the debris disk’s initial specific angular momentum distribution is sharply peaked at roughly the specific angular momentum of the merged neutron star’s outer layers, a few r g c, and identify the regulating mechanism.

Add to your calendar or Include in your list

Mon 02 Jun 13:00: Cracks in the Standard Cosmological Model: Anomalies, Tensions, and Hints of New Physics

Fri, 23/05/2025 - 16:29
Cracks in the Standard Cosmological Model: Anomalies, Tensions, and Hints of New Physics

The ΛCDM model has long served as the standard paradigm in cosmology, offering a remarkably successful description of the Universe’s evolution. Yet, as observational precision continues to improve, persistent tensions have emerged across a range of probes, including the well-known Hubble constant discrepancy. While individual datasets may each align with ΛCDM, their collective interpretation reveals significant discordances that challenge the model’s internal consistency. In this talk, I will review the most prominent tensions in modern cosmology and assess their implications. I will present recent results pointing to hints of dynamical dark energy and interactions within the dark sector. I will also reflect on the growing influence of methodological choices, such as dataset selection and model assumptions, in shaping our cosmological conclusions.

Add to your calendar or Include in your list

Mon 09 Jun 14:00: Modeling ion-neutral interaction in the solar chromosphere

Fri, 23/05/2025 - 12:48
Modeling ion-neutral interaction in the solar chromosphere

In this talk I will describe the results of the PI2FA project focused on creating and applying tools for multi-dimensional modeling of partially ionized chromospheric plasma based on the single-fluid and two-fluid multi-species formalism. Scientific questions include clarifying chromospheric heating mechanisms, creating multi-dimensional realistic models of the solar chromosphere incorporating ion-neutral effects, and understanding neutrals’ role in prominence dynamics. The research focused on fundamental mechanisms of energy propagation and exchange in complex plasmas, such as waves, instabilities, and plasma-radiation interactions, seeking the transition from one-dimensional idealized models to multi-dimensional simulations, and observational support. Among the main conclusions, our research unveiled that multi-fluid effects become pronounced for waves with frequencies lower than typical inter-particle collisional frequencies, unlike suggested by theory of waves in homogeneous plasmas; we showed that ambipolar heating is most significant in the quietest regions, characterized by small-scale dynamo fields; we found that multi-fluid effects hold great importance within transition layers between cool and hot materials, such as the solar transition region and prominence-corona interface. Multi-fluid effects operate at scales beyond the resolution capabilities of even our most advanced instrumentation, necessitating specialized observational initiatives. Our initial steps in this direction allowed the detection of subtle differences in velocities between ions and neutrals, in line with theoretical predictions.

Add to your calendar or Include in your list

Thu 29 May 16:00: Latest results building upon slitless spectroscopic surveys with JWST

Fri, 23/05/2025 - 12:12
Latest results building upon slitless spectroscopic surveys with JWST

I will present results on the properties of faint galaxies and AGN in the early Universe, building upon samples identified using Wide Field Slitless Spectroscopy with NIR Cam on the James Webb Space Telescope (JWST). This mode effectively turns JWST into an efficient redshift machine ideal to map out galaxy over-density. In my talk, I will focus on two topics: 1) The impact of galaxies and AGN on the reionization of the Universe, directly measured by mapping out the correlation between galaxies and ionized regions with quasar and galaxy transmission spectroscopy, and 2) The nature of broad Hα line-selected AGN (the so-called Little Red Dots) that JWST has uncovered in the first few Gyr, including new results based on the deep NIR Cam grism spectroscopy of their large-scale environments, deep high resolution spectroscopy unveiling the prevalence of dense absorbing gas and resolved Lyman-alpha mapping of the circumgalactic medium with VLT /MUSE. Finally, I will synthesize what these observations are learning us in the context of galaxy – SMBH co-evolution, SMBH formation and their role in cosmic reionization.

Add to your calendar or Include in your list