skip to content

Kavli Institute for Cosmology, Cambridge

 

Beyond the stars: Linking H$\alpha$ sizes, kinematics, and star formation in galaxies at $z\approx 4-6$ with JWST grism surveys and $\texttt{geko}$

Thu, 09/10/2025 - 11:45
arXiv:2510.06315v1 Announce Type: new Abstract: Understanding how galaxies assemble their mass during the first billion years of cosmic time is a central goal of extragalactic astrophysics, yet joint constraints on their sizes and kinematics remain scarce. We present one of the first statistical studies of the $\mathrm{H}\alpha$ size-mass relation at high redshift with a sample of 213 galaxies at spectroscopic redshifts of $z\approx 4-6$ from the FRESCO and CONGRESS NIRCam grism surveys. We measure the $\mathrm{H}\alpha$ morphology and kinematics of our sample using the novel forward modelling Bayesian inference tool $\texttt{geko}$, and complement them with stellar continuum sizes in the rest-frame FUV, NUV, and optical, obtained from modelling of imaging data from the JADES survey with $\texttt{Pysersic}$. At $z\approx5$, we find that the average H$\alpha$ sizes are larger than the stellar continuum (FUV, NUV and optical), with $r_{\rm e, H\alpha}= 1.17 \pm 0.05$ kpc and $r_{\rm e,cont} \approx 0.9$ kpc for galaxies with $\log(M_{\star} ~\rm [M_{\odot}])= 9.5$. However, we find no significant differences between the stellar continuum sizes at different wavelengths, suggesting that galaxies are not yet steadily growing inside-out at these epochs. Instead, we find that the ratio $r_{\rm e, H\alpha}/r_{\rm e, NUV}$ increases with the distance above the star-forming main sequence ($\Delta \rm MS$), consistent with an expansion of H$\alpha$ sizes during episodes of enhanced star formation caused by an increase in ionising photons. As galaxies move above the star-forming main sequence, we find an increase of their rotational support $v/\sigma$, which could be tracing accreting gas illuminated by the \Ha\ emission. Finally, we find that about half of the elongated systems ($b/a < 0.5$) are not rotationally supported, indicating a potential flattened/prolate galaxy population at high redshift.

MEGATRON: the impact of non-equilibrium effects and local radiation fields on the circumgalactic medium at cosmic noon

Wed, 08/10/2025 - 11:02
arXiv:2510.05667v1 Announce Type: new Abstract: We present three cosmological radiation-hydrodynamic zoom simulations of the progenitor of a Milky Way-mass galaxy from the MEGATRON suite. The simulations combine on-the-fly radiative transfer with a detailed non-equilibrium thermochemical network (81 ions and molecules), resolving the cold and warm gas in the circumgalactic medium (CGM) on spatial scales down to 20 pc and on average 200 pc at cosmic noon. Comparing our full non-equilibrium calculation with local radiation to traditional post-processed photoionization equilibrium (PIE) models assuming a uniform UV background (UVB), we find that non-equilibrium physics and local radiation fields fundamentally impact the thermochemistry of the CGM. Recombination lags and local radiation anisotropy shift ions away from their PIE+UVB values and modify covering fractions (for example, HI damped Ly$\alpha$ absorbers differ by up to 40%). In addition, a resolution study with cooling-length refinement allows us to double the resolution in the cold and warm CGM gas, reaching 120 pc on average. When refining on cooling length, the mass of the lightest cold clumps decreases tenfold to $\approx 10^4\,M_\odot$, their boundary layers develop sharper ion stratification, and the warm gas is better resolved, boosting the abundance of warm gas tracers such as CIV and OIII. Together, these results demonstrate that non-equilibrium thermochemistry coupled to radiative transfer, combined with physically motivated resolution criteria, is essential to predict circumgalactic absorption and emission signatures and to guide the design of targeted observations with existing and upcoming facilities.

The Prevalence of Bursty Star Formation in Low-Mass Galaxies at z=1-7 from H{\alpha}-to-UV Diagnostics

Wed, 08/10/2025 - 10:48
arXiv:2510.05388v1 Announce Type: new Abstract: We present an analysis of bursty star-formation histories (SFHs) of 346 star-forming galaxies at $1\lesssim z<7$, selected from JWST/NIRSpec G395M and PRISM spectroscopy provided by the CEERS and RUBIES surveys. We analyze the correlation of star-formation rate vs. stellar mass (the star-forming main sequence, SFMS) for our sample and find no significant difference between the intrinsic scatter in the H$\alpha$-based SFMS and the UV-continuum-based SFMS. However, the diagnostic power of the SFMS is limited at high redshift and low stellar mass due to observational biases that exclude faint, quenched galaxies. To more directly probe star-formation variability, we examine the dust-corrected H$\alpha$-to-UV ratio, which is assumed to trace deviations a from constant SFH over the past $\sim100$ Myr. In our sample, $73^{+4}_{-4}$% of galaxies exhibit H$\alpha$-to-UV ratios inconsistent with a constant SFH. We do not observe any statistically significant evolution in the H$\alpha$-to-UV ratio with redshift. Additionally, lower-mass galaxies ($7\leq\text{log}(M_*/M_{\odot})<8.5$) are $30 \pm 1$% more likely to lie above this equilibrium range -- indicative of a recent ($\lesssim 100$ Myr) burst of star formation -- compared to higher-mass systems ($8.5\leq\text{log}(M_*/M_{\odot})\leq10.9$). These results suggest that bursty SFHs are more common in low-mass galaxies at $z\sim 1$-$7$ and that this remains relatively stable across $\sim0.8$-$6$ Gyr after the Big Bang.

MEGATRON: how the first stars create an iron metallicity plateau in the smallest dwarf galaxies

Wed, 08/10/2025 - 10:29
arXiv:2510.05232v1 Announce Type: new Abstract: We study the stellar mass-iron metallicity relation of dwarf galaxies in the new high-resolution MEGATRON cosmological radiation-hydrodynamics simulations. These simulations model galaxy formation up to $z\approx8$ in a region that will collapse into a Milky-Way-like galaxy at $z=0$, while self-consistently tracking Population III and II (Pop.~III, Pop.~II) star formation, feedback and chemical enrichment. MEGATRON dwarf galaxies are in excellent agreement with the observed stellar mass-metallicity relation at $z=0$, including an over-abundance of dwarfs along a flat plateau in metallicity ($\langle [\rm{Fe}/\rm{H}] \rangle \approx -2.5$) at low stellar masses ($M_{\star} \leq 10^5 \, \rm{M}_{\odot}$). We tie this feature to the chemical enrichment of dwarf galaxies by Pop.~III pair-instability supernova (PISN) explosions. The strong Lyman-Werner background (LW) from the protogalaxy ensures that PISNe occur in haloes massive enough ($\approx 10^7\, \rm{M}_{\odot}$) to retain their ejecta. We also predict a tail of $\approx 20\%$ of iron-deficient ($\langle [\rm{Fe}/\rm{H}] \rangle \leq - 3$) dwarf galaxies. We show that both plateau and tail (i) are robust to large variations in Pop.~II feedback assumptions, and (ii) survive in bound satellites surrounding the central galaxy at $z=0$.

High-Dimensional Bayesian Model Comparison in Cosmology with GPU-accelerated Nested Sampling and Neural Emulators

Wed, 08/10/2025 - 10:28
arXiv:2509.13307v2 Announce Type: replace Abstract: We demonstrate a GPU-accelerated nested sampling framework for efficient high-dimensional Bayesian inference in cosmology. Using JAX-based neural emulators and likelihoods for cosmic microwave background and cosmic shear analyses, our approach provides parameter constraints and direct calculation of Bayesian evidence. In the 39-dimensional $\Lambda$CDM vs $w_0w_a$ shear analysis, we produce Bayes factors and a robust error bar in just 2 days on a single A100 GPU, without loss of accuracy. Where CPU-based nested sampling can now be outpaced by methods relying on MCMC sampling and decoupled evidence estimation, we demonstrate that with GPU acceleration nested sampling offers the necessary speed-up to put it on equal computational footing with these methods, especially where reliable model comparison is paramount. We also explore interpolation in the matter power spectrum for cosmic shear analysis, finding a further factor of 4 speed-up with consistent posterior contours and Bayes factor. We put forward both nested and gradient-based sampling as useful tools for the modern cosmologist, where cutting-edge inference pipelines can yield orders of magnitude improvements in computation time.

MEGATRON: Reproducing the Diversity of High-Redshift Galaxy Spectra with Cosmological Radiation Hydrodynamics Simulations

Wed, 08/10/2025 - 10:28
arXiv:2510.05201v1 Announce Type: new Abstract: We present the MEGATRON suite of cosmological radiation hydrodynamics simulations following the formation of Milky Way-mass galaxies from the earliest cosmic epochs when Population III stars form to Cosmic Noon. The suite represents the first set of cosmological simulations that couples a vast non-equilibrium thermochemistry network of primordial species, metals, and molecules to multifrequency, on-the-fly radiation transport, allowing us to directly predict the spectral properties of early galaxies. By initializing the simulations at zero metallicity, resolving haloes well below the atomic cooling threshold, reaching parsec-scale resolution, and modeling a Milky Way-mass environment, we aim to address four key science themes: 1) Star formation at cosmic dawn, 2) Galaxy formation and the interstellar medium in the epoch of reionization, 3) The circumgalactic medium towards cosmic noon, and 4) Reionization in a local volume environment and near-field cosmology. In this introductory work, we present an overview of the physical characteristics of high-redshift MEGATRON galaxies and their environment at $z>8$. We present a library of $>175,000$ simulated galaxy spectra and demonstrate how the diversity of galaxy spectra seen by JWST is naturally reproduced in the context of a $\Lambda$CDM cosmology. This project represents a step towards making more direct comparisons between simulations and observations and will enable future work to both optimize methods for inferring galaxy properties from observations and to elucidate the physics that governs galaxy formation in the early Universe.

The Bispectrum of Intrinsic Alignments: II. Precision Comparison Against Dark Matter Simulations

Tue, 07/10/2025 - 09:02
arXiv:2507.06818v2 Announce Type: replace Abstract: We measure three-dimensional bispectra of halo intrinsic alignments (IA) and dark matter overdensities in real space from N-body simulations for halos of mass $10^{12}-10^{12.5} M_\odot /h$. We show that their multipoles with respect to the line of sight can be accurately described by a tree-level perturbation theory model on large scales ($k\lesssim 0.11\,h$/Mpc) at $z=0$. For these scales and in a simulation volume of 1 Gpc/$h$, we detect the bispectrum monopole $B_{\delta\delta E}^{00}$ at $\sim 30\sigma$ and the two quadrupoles $B_{\delta \delta E}^{11}$ and $B_{\delta \delta E}^{20}$ at $\sim 25\sigma$ and $\sim 15\sigma$, respectively. We also report similar detection significances for the lowest order multipoles of $B_{\delta EE}$ and $B_{EEE}$, although these are largely driven by stochastic contributions. We show that the first and second order EFT parameters are consistent with those obtained from fitting the IA power spectrum analysis at next-to-leading order, without requiring any priors to break degeneracies for the quadratic bias parameters. Moreover, the inclusion of higher multipole moments of $B_{\delta\delta E}$ greatly reduces the errors on second order bias parameters, by factors of 5 or more. The IA bispectrum thus provides an effective means of determining higher order shape bias parameters, thereby characterizing the scale dependence of the IA signal. We also detect parity-odd bispectra such as $B_{\delta \delta B}$ and $B_{\delta EB}$ at $\sim 10 \sigma$ significance or more for $k<0.15\,h$/Mpc and they are fully consistent with the parity-even sector. Furthermore, we check that the Gaussian covariance approximation works reasonably well on the scales we consider here. These results lay the groundwork for using the bispectrum of IA in cosmological analyses.

Euclid preparation. XLI. Galaxy power spectrum modelling in real space

Mon, 06/10/2025 - 10:30
arXiv:2312.00679v2 Announce Type: replace Abstract: We investigate the accuracy of the perturbative galaxy bias expansion in view of the forthcoming analysis of the Euclid spectroscopic galaxy samples. We compare the performance of an Eulerian galaxy bias expansion, using state-of-art prescriptions from the effective field theory of large-scale structure (EFTofLSS), against a hybrid approach based on Lagrangian perturbation theory and high-resolution simulations. These models are benchmarked against comoving snapshots of the Flagship I N-body simulation at $z=(0.9,1.2,1.5,1.8)$, which have been populated with H$\alpha$ galaxies leading to catalogues of millions of objects within a volume of about $58\,h^{-3}\,{\rm Gpc}^3$. Our analysis suggests that both models can be used to provide a robust inference of the parameters $(h, \omega_{\rm c})$ in the redshift range under consideration, with comparable constraining power. We additionally determine the range of validity of the EFTofLSS model in terms of scale cuts and model degrees of freedom. From these tests, it emerges that the standard third-order Eulerian bias expansion can accurately describe the full shape of the real-space galaxy power spectrum up to the maximum wavenumber $k_{\rm max}=0.45\,h\,{\rm Mpc}^{-1}$, even with a measurement precision well below the percent level. In particular, this is true for a configuration with six free nuisance parameters, including local and non-local bias parameters, a matter counterterm, and a correction to the shot-noise contribution. Fixing either tidal bias parameters to physically-motivated relations still leads to unbiased cosmological constraints. We finally repeat our analysis assuming a volume that matches the expected footprint of Euclid, but without considering observational effects, as purity and completeness, showing that we can get consistent cosmological constraints over this range of scales and redshifts.

The warm outer layer of a Little Red Dot as the source of [Fe II] and collisional Balmer lines with scattering wings

Mon, 06/10/2025 - 10:12
arXiv:2510.00103v2 Announce Type: replace Abstract: The population of the Little Red Dots (LRDs) may represent a key phase of supermassive black hole (SMBH) growth. A cocoon of dense excited gas is emerging as key component to explain the most striking properties of LRDs, such as strong Balmer breaks and Balmer absorption, as well as the weak IR emission. To dissect the structure of LRDs, we analyze new deep JWST/NIRSpec PRISM and G395H spectra of FRESCO-GN-9771, one of the most luminous known LRDs at $z=5.5$. These reveal a strong Balmer break, broad Balmer lines and very narrow [O III] emission. We unveil a forest of optical [Fe II] lines, which we argue is emerging from a dense ($n_{\rm H}=10^{9-10}$ cm$^{-3}$) warm layer with electron temperature $T_{\rm e}\approx7000$ K. The broad wings of H$\alpha$ and H$\beta$ have an exponential profile due to electron scattering in this same layer. The high $\rm H\alpha:H\beta:H\gamma$ flux ratio of $\approx10.4:1:0.14$ is an indicator of collisional excitation and resonant scattering dominating the Balmer line emission. A narrow H$\gamma$ component, unseen in the other two Balmer lines due to outshining by the broad components, could trace the ISM of a normal host galaxy with a star formation rate $\sim5$ M$_{\odot}$ yr$^{-1}$. The warm layer is mostly opaque to Balmer transitions, producing a characteristic P-Cygni profile in the line centers suggesting outflowing motions. This same layer is responsible for shaping the Balmer break. The broad-band spectrum can be reasonably matched by a simple photoionized slab model that dominates the $\lambda>1500$ {\AA} continuum and a low mass ($\sim10^8$ M$_{\odot}$) galaxy that could explain the narrow [O III], with only subdominant contribution to the UV continuum. Our findings indicate that Balmer lines are not directly tracing gas kinematics near the SMBH and that the BH mass scale is likely much lower than virial indicators suggest.

Not Just a Dot: the complex UV morphology and underlying properties of Little Red Dots

Fri, 03/10/2025 - 10:55
arXiv:2411.14383v2 Announce Type: replace Abstract: We analyze 99 photometrically selected Little Red Dots (LRDs) at $z \approx 4-8$ in the GOODS fields, leveraging ultra-deep JADES NIRCam short-wavelength (SW) data. We examine the morphology of 30 LRDs, while the remaining 69 appear predominantly compact, with sizes $\leq 400$ pc and no extended components even in stacked SW images. However, their unresolved nature may partly reflect current depth limitations, which could prevent the detection of faint diffuse components. Among the 30 morphologically analyzed LRDs, 50% show multiple associated components, while the rest exhibit highly asymmetric structures, despite appearing as single sources. This diversity in rest-frame UV morphologies may point to interactions or strong internal feedback. We find median stellar masses of $\log_{10}(M_{\star}/M_{\odot}) = 9.07_{-0.08}^{+0.11}$ for pure stellar models with $A_{V} \approx 1.16^{+0.11}{-0.21}$ mag, and $\log{10}(M_{\star}/M_{\odot}) = 9.67^{+0.17}{-0.27}$ for models including AGNs with $A{V} \approx 2.74^{+0.55}_{-0.71}$ mag, in line with recent studies suggesting higher masses and dust content for AGN-fitted LRDs. NIRSpec spectra are available for 15 sources, six of which are also in the morphological sample. Broad H$\alpha$ is detected in 40% (FWHM = 1200-2900 km/s), and one source shows broad H$\beta$ emission. Emission line ratios indicate a composite nature, consistent with both AGN and stellar processes. Altogether, these results suggest that LRDs are a mixed population, and their rest-frame UV morphology reflects this complexity. Morphological studies of larger samples could provide a new way to understand what drives their properties and evolution.

JADES: The Star Formation and Dust Attenuation Properties of Galaxies at 3<z<7

Thu, 02/10/2025 - 10:32
arXiv:2510.00235v1 Announce Type: new Abstract: We present the star formation and dust attenuation properties for a sample of 602 galaxies at redshifts $\rm{3

JWST-discovered AGN: evidence for heavy obscuration in the type-2 sample from the first stacked X-ray detection

Thu, 02/10/2025 - 10:20
arXiv:2510.00112v1 Announce Type: new Abstract: One of the most puzzling properties of the high-redshift AGN population recently discovered by JWST, including both broad-line and narrow-line sources, is their X-ray weakness. With very few exceptions, and regardless of the optical classification, they are undetected at the limits of the deepest Chandra fields, even when stacking signals from tens of sources in standard observed-frame energy intervals (soft, hard, and full bands). It has been proposed that their elusive nature in the X-ray band is due to heavy absorption by dust-free gas or intrinsic weakness, possibly due to high, super-Eddington accretion. In this work, we perform X-ray stacking in three customized rest-frame energy ranges (1-4, 4-7.25, and 10-30 keV) of a sample of 50 Type 1 and 38 Type 2 AGN identified by JWST in the CDFS and CDFN fields. For the Type 2 sub-sample, we reach a total of about 210 Ms exposure, and we report a significant ($\sim 3\sigma$) detection in the hardest (10-30 keV rest frame) band, along with relatively tight upper limits in the rest frame softer energy bands. The most straightforward interpretation is in terms of heavy obscuration due to gas column densities well within the Compton thick regime ($> 2 \times 10^{24} $cm$^{-2}$) with a large covering factor, approaching 4$\pi$. The same procedure applied to the Type 1 sub-sample returns no evidence for a significant signal in about 140 Ms stacked data in any of the adopted bands, confirming their surprisingly elusive nature in the X-ray band obtained with previous stacking experiments. A brief comparison with the current observations and the implications for the evolution of AGN are discussed.

JADES: An Abundance of Ultra-Distant T- and Y-Dwarfs in Deep Extragalactic Data

Thu, 02/10/2025 - 10:20
arXiv:2510.00111v1 Announce Type: new Abstract: Ultra-cool T- (T$_{\mathrm{eff}} \approx$ 500 - 1200 K) and Y-dwarfs (T$_{\mathrm{eff}}$ $\lessapprox 500$ K) have historically been found only a few hundred parsecs from the Sun. The sensitivity and wavelength coverage of the NIRCam instrument on board the James Webb Space Telescope offer a unique method for finding low-temperature brown dwarfs in deep extragalactic datasets out to multiple kiloparsecs. Here we report on the selection of a sample of 41 brown dwarf and brown dwarf candidates across the JWST Advanced Deep Extragalactic Survey (JADES) in the GOODS-S and GOODS-N regions. We introduce a new open-source Bayesian tool, the Near-Infrared Fitting for T and Y-dwarfs (\texttt{NIFTY}), to derive effective temperatures, metallicities, and distances from JWST photometry. We find that 31 candidates have fits consistent with T-dwarf temperatures out to 5 - 6 kpc, and 10 candidates have fits consistent with Y-dwarf temperatures out to 1 - 2 kpc. The majority of the sources are best fit with sub-solar metallicity models, consistent with them being subdwarfs in the Milky Way thick disk and halo. We report proper motions for nine brown dwarf candidates (three are newly presented), and calculate the number density of T- and Y-dwarfs as a function of temperature and distance above the Milky Way midplane. We further discuss how Y-dwarfs can serve as contaminants in the search for ultra-high-redshift galaxies. Together, these results demonstrate the power of deep JWST extragalactic imaging to probe the coldest substellar populations far beyond the solar neighborhood, providing new constraints on the Milky Way's structure and brown dwarf demographics.

Constraints on the Thompson optical depth to the CMB from the Lyman-$\alpha$ forest

Thu, 02/10/2025 - 10:19
arXiv:2510.00107v1 Announce Type: new Abstract: We present the first constraints on the electron optical depth to reionization, $\tau_{\mathrm{e}}$, from the Lyman-$\alpha$ forest alone for physically motivated reionization models that match the reionization's end-point, $z_{\rm{end}}$, required by the same astrophysical probe, and for symmetric reionization models with fixed duration, $\Delta z$, commonly adopted in CMB reionization analyses. Compared to traditional estimates from the latter, the Lyman-$\alpha$ forest traces the ionization state of the IGM through its coupling with the thermal state. We find an explicit mapping between the two solving the chemistry and temperature evolution equations for hydrogen and helium. Our results yield $\tau_{\mathrm{e}}$=$0.042^{+0.047}_{-0.02}$ (95% C.L) and $\tau_{\mathrm{e}}$=$0.042^{+0.024}_{-0.015}$ for reionization models with $z_{\rm{end}}$ and $\Delta z$-fixed, respectively, disfavoring a high $\tau_{\mathrm{e}}$=0.09 by 2.57$\sigma$ and 4.31$\sigma$. With mock Lyman-$\alpha$ forest data that mimics the precision of future larger quasar sample datasets, we would potentially obtain tighter $\tau_{\mathrm{e}}$ constraints and exclude such a high $\tau_{\mathrm{e}}$ with a higher significance, paving the way for novel constraints on the epoch of reionization from a large-scale structure probe independent of the CMB.

The warm outer layer of a Little Red Dot as the source of [Fe II] and collisional Balmer lines with scattering wings

Thu, 02/10/2025 - 10:18
arXiv:2510.00103v1 Announce Type: new Abstract: The population of the Little Red Dots (LRDs) may represent a key phase of supermassive black hole (SMBH) growth. A cocoon of dense excited gas is emerging as key component to explain the most striking properties of LRDs, such as strong Balmer breaks and Balmer absorption, as well as the weak IR emission. To dissect the structure of LRDs, we analyze new deep JWST/NIRSpec PRISM and G395H spectra of FRESCO-GN-9771, one of the most luminous known LRDs at $z=5.5$. These reveal a strong Balmer break, broad Balmer lines and very narrow [O III] emission. We unveil a forest of optical [Fe II] lines, which we argue is emerging from a dense ($n_{\rm H}=10^{9-10}$ cm$^{-3}$) warm layer with electron temperature $T_{\rm e}\approx7000$ K. The broad wings of H$\alpha$ and H$\beta$ have an exponential profile due to electron scattering in this same layer. The high $\rm H\alpha:H\beta:H\gamma$ flux ratio of $\approx10.4:1:0.14$ is an indicator of collisional excitation and resonant scattering dominating the Balmer line emission. A narrow H$\gamma$ component, unseen in the other two Balmer lines due to outshining by the broad components, could trace the ISM of a normal host galaxy with a star formation rate $\sim5$ M$_{\odot}$ yr$^{-1}$. The warm layer is mostly opaque to Balmer transitions, producing a characteristic P-Cygni profile in the line centers suggesting outflowing motions. This same layer is responsible for shaping the Balmer break. The broad-band spectrum can be reasonably matched by a simple photoionized slab model that dominates the $\lambda>1500$ {\AA} continuum and a low mass ($\sim10^8$ M$_{\odot}$) galaxy that could explain the narrow [O III], with only subdominant contribution to the UV continuum. Our findings indicate that Balmer lines are not directly tracing gas kinematics near the SMBH and that the BH mass scale is likely much lower than virial indicators suggest.

Irony at z=6.68: a bright AGN with forbidden Fe emission and multi-component Balmer absorption

Thu, 02/10/2025 - 10:16
arXiv:2510.00101v1 Announce Type: new Abstract: We present the deepest medium-resolution JWST/NIRSpec spectroscopy to date of a bright Little Red Dot (LRD) AGN, Irony at z=6.68. The data reveal broad Balmer emission from H$\alpha$-H$\delta$ and Balmer absorption in H$\alpha$-H$\epsilon$. The absorption lines are kinematically split: H$\alpha$ is blueshifted while higher-order lines are redshifted suggesting complex gas kinematics; their relative ratios are inconsistent with a single, passive absorbing screen. The line depths require absorption of both the BLR and the continuum, ruling out a stellar origin, consistent with the smooth Balmer break. We fit the broad H$\gamma$-H$\alpha$ lines and find the data favor a double-Gaussian effective profile, although exponential wings are evident. Depending on the adopted profile, single-epoch virial estimates give log(M$_\bullet$/M$_\odot$)=7.86-8.39 and $\lambda_{\rm Edd}$=1.7-0.4. The dynamical mass implied by the narrow lines is low log(Mdyn/M$_\odot$)=9.1, suggesting an overmassive black hole. The narrow lines display little attenuation, A$_V<0.5$ mag; while broad H$\alpha$/H$\beta\sim9$ and the broad Balmer decrements are inconsistent with standard dust attenuation curves, suggesting collisional processes. The forbidden-line spectrum includes auroral [S II] and [N II], and a forest of [Fe II] lines. Line ratios and kinematics indicate a stratified narrow-line region with both low (n$_{\rm e}$=420 cm$^{-3}$) and high densities (n$_{\rm e}\gtrsim 6.3\times10^5$ cm$^{-3}$). We detect metal absorption lines in both the optical (Ca II and Na I) and UV range (Fe II UV1-UV3). Our results support a picture of a compact AGN embedded in a dense, high covering-factor and stratified cocoon, with complex neutral-gas kinematics. While the choice of broad-line profile affects the virial estimates of M$_\bullet$, we find the effect to be of order 0.6 dex between the different approaches.

The Case for Space: Estimating Precise Time Delays from Ground- and Space-Based Observations of Lensed Supernovae with Glimpse

Wed, 01/10/2025 - 11:58
arXiv:2509.25350v1 Announce Type: new Abstract: The delay in arrival time of the multiple images of gravitationally lensed supernovae (glSNe) can be related to the present-day expansion rate of the universe, $H_{0}$. Despite their rarity, Rubin Observatory's Legacy Survey of Space and Time (Rubin-LSST) is expected to discover tens of galaxy-scale glSNe per year, many of which will not be resolved due to their compact nature. Follow-up from ground- and space-based telescopes will be necessary to estimate time delays to sufficient precision for meaningful $H_{0}$ constraints. We present the Glimpse model (GausSN Light curve Inference of Magnifications and Phase Shifts, Extended) that estimates time delays with resolved and unresolved observations together for the first time, while simultaneously accounting for dust and microlensing effects. With this method, we explore best follow-up strategies for glSNe observed by Rubin-LSST. For unresolved systems on the dimmest end of detectability by Rubin-LSST, having peak i-band magnitudes of 22-24 mag, the time delays are measured to as low as 0.7 day uncertainty with 6-8 epochs of resolved space-based observations in each of 4-6 optical and NIR filters. For systems of similar brightness that are resolved by ground-based facilities, time delays are consistently constrained to 0.5-0.8 day precision with 6 epochs in 4 optical and NIR filters of space-based observations or 8 epochs in 4 optical filters of deep ground-based observations. This work improves on previous time-delay estimation methods and demonstrates that glSNe time delays of $\sim10-20$ days can be measured to sufficient precision for competitive $H_{0}$ estimates in the Rubin-LSST era.

SN 2024bfu, SN 2025qe, and the early light curves of type Iax supernovae

Wed, 01/10/2025 - 11:54
arXiv:2506.02118v2 Announce Type: replace Abstract: Type Iax supernovae (SNe Iax) are one of the most common subclasses of thermonuclear supernova and yet their sample size, particularly those observed shortly after explosion, remains relatively small. In this paper we present photometric and spectroscopic observations of two SNe Iax discovered shortly after explosion, SN 2024bfu and SN 2025qe. Both SNe were observed by multiple all-sky surveys, enabling tight constraints on the moment of first light and the shape of the early light curve. Our observations of SN 2025qe begin <2d after the estimated time of first light and represent some of the earliest observations of any SN Iax. Spectra show features consistent with carbon absorption throughout the evolution of SN 2025qe, potentially indicating the presence of unburned material throughout the ejecta. We gather a sample of SNe Iax observed by ATLAS, GOTO, and ZTF shortly after explosion and measure their rise times and early light curve power-law rise indices. We compare our results to a sample of normal SNe Ia and find indications that SNe Iax show systematically shorter rise times, consistent with previous work. We also find some indication that SNe Iax show systematically lower rise indices than normal SNe Ia. The low rise indices observed among SNe Iax are qualitatively consistent with extended $^{56}$Ni distributions and more thoroughly-mixed ejecta compared to normal SNe Ia, similar to predictions from pure deflagration explosions.

Can GRB 250702B be explained as the tidal disruption of a white dwarf by an intermediate mass black hole? Yes

Tue, 30/09/2025 - 14:40
arXiv:2509.22843v1 Announce Type: new Abstract: GRB 250702B is a unique astrophysical transient characterised by its nature as a repeating gamma-ray trigger. Its properties include possible periodicity in its gamma-ray light curve, an X-ray counterpart that rose prior to the gamma-ray outbursts and faded quickly, and radio and infrared counterparts. These features are difficult to reconcile with most models of high energy transients but we show that they are compatible with a white dwarf bound to an intermediate mass black hole that is tidally stripped over multiple pericentre passages before being fully disrupted. Accretion onto the black hole powers a mildly relativistic jet that produces the X-rays through internal processes and the infrared and radio counterparts through thermal emission and external shocks respectively but is unable to produce the gamma-ray emission on its own. We propose that chaotic debris streams from the multiple stripping episodes can collide with a period roughly the same as the orbital period of the star. These shocks produce hard X-ray photons that are upscattered by the jet to produce the observed gamma-ray emission. Future analysis of the jet properties will allow us to place firmer constraints on our model.

JWST Spectroscopy of GRB 250702B: An Extremely Rare and Exceptionally Energetic Burst in a Dusty, Massive Galaxy at $z=1.036$

Tue, 30/09/2025 - 14:25
arXiv:2509.22778v1 Announce Type: new Abstract: We present follow-up observations of the day-long, repeating GRB 250702B with the Near Infrared Spectrograph (NIRSpec) on board the James Webb Space Telescope (JWST). Through the identification of narrow hydrogen emission lines at a consistent redshift of $z = 1.036 \pm 0.004$, we calibrate the distance scale, and therefore the energetics, of this unique extragalactic transient. At this distance, the resulting $\gamma$-ray energy release is at least $E_{\gamma,\rm iso} = 2.2 \times 10^{54}$\,erg. We find no evidence for ongoing transient emission at the GRB position, and exclude any accompanying supernova with a luminosity comparable to the Type Ic broad-line SN 2023lcr, though we are unable to constrain fainter events. The inferred rate of such events, assuming at most one in the lifetime of {\em Fermi}, suggests that such bursts are very rare, with volumetric rates $>1,000$ times lower than normal high luminosity long GRBs and $> 10^5$ times lower than core collapse supernovae when corrected for beaming. Furthermore, we find that the host galaxy is unique amongst GRB host galaxies, and extremely rare in the general galaxy population, being extremely large, dusty and with high stellar mass. The identification of such an exotic GRB in such an unusual galaxy raises the possibility that the environment was important in the progenitor channel for this event.