The Atacama Cosmology Telescope: DR6 Constraints on Extended Cosmological Models
arXiv:2503.14454v2 Announce Type: replace
Abstract: We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from Planck. To break geometric degeneracies, we include ACT and Planck CMB lensing data and baryon acoustic oscillation data from DESI Year-1, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral index $d n_s/d\ln k = 0.0062 \pm 0.0052$) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming ($N_{\rm eff} = 2.86 \pm 0.13$, which combined with external BBN data becomes $N_{\rm eff} = 2.89 \pm 0.11$), for non-zero neutrino masses ($\sum m_\nu < 0.082$ eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation ($N_{\rm idr} < 0.134$), early-universe variation of fundamental constants, early dark energy, primordial magnetic fields, or modified recombination. Our data are consistent with standard BBN, the FIRAS-inferred CMB temperature, a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant, and the late-time growth rate predicted by general relativity. We find no statistically significant preference for a departure from the baseline $\Lambda$CDM model. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored by our data.
Euclid: An emulator for baryonic effects on the matter bispectrum
arXiv:2506.18974v1 Announce Type: new
Abstract: The Euclid mission and other next-generation large-scale structure surveys will enable high-precision measurements of the cosmic matter distribution. Understanding the impact of baryonic processes such as star formation and AGN feedback on matter clustering is crucial to ensure precise and unbiased cosmological inference. Most theoretical models of baryonic effects to date focus on two-point statistics, neglecting higher-order contributions. This work develops a fast and accurate emulator for baryonic effects on the matter bispectrum, a key non-Gaussian statistic in the nonlinear regime. We employ high-resolution $N$-body simulations from the BACCO suite and apply a combination of cutting-edge techniques such as cosmology scaling and baryonification to efficiently span a large cosmological and astrophysical parameter space. A deep neural network is trained to emulate baryonic effects on the matter bispectrum measured in simulations, capturing modifications across various scales and redshifts relevant to Euclid. We validate the emulator accuracy and robustness using an analysis of \Euclid mock data, employing predictions from the state-of-the-art FLAMINGO hydrodynamical simulations. The emulator reproduces baryonic suppression in the bispectrum to better than 2$\%$ for the $68\%$ percentile across most triangle configurations for $k \in [0.01, 20]\,h^{-1}\mathrm{Mpc}$ and ensures consistency between cosmological posteriors inferred from second- and third-order weak lensing statistics.
The Simons Observatory: Validation of reconstructed power spectra from simulated filtered maps for the Small Aperture Telescope survey
arXiv:2502.00946v2 Announce Type: replace
Abstract: We present a transfer function-based method to estimate angular power spectra from filtered maps for cosmic microwave background (CMB) surveys. This is especially relevant for experiments targeting the faint primordial gravitational wave signatures in CMB polarisation at large scales, such as the Simons Observatory (SO) small aperture telescopes. While timestreams can be filtered to mitigate the contamination from low-frequency noise, usual methods that calculate the mode coupling at individual multipoles can be challenging for experiments covering large sky areas or reaching few-arcminute resolution. The method we present here, although approximate, is more practical and faster for larger data volumes. We validate it through the use of simulated observations approximating the first year of SO data, going from half-wave plate-modulated timestreams to maps, and using simulations to estimate the mixing of polarisation modes induced by an example of time-domain filtering. We show its performance through an example null test and with an end-to-end pipeline that performs inference on cosmological parameters, including the tensor-to-scalar ratio $r$. The performance demonstration uses simulated observations at multiple frequency bands. We find that the method can recover unbiased parameters for our simulated noise levels.
Cosmological constraints from the cross-correlation of DESI Luminous Red Galaxies with CMB lensing from Planck PR4 and ACT DR6
arXiv:2407.04607v2 Announce Type: replace
Abstract: We infer the growth of large scale structure over the redshift range $0.4\lesssim z \lesssim 1$ from the cross-correlation of spectroscopically calibrated Luminous Red Galaxies (LRGs) selected from the Dark Energy Spectroscopic Instrument (DESI) legacy imaging survey with CMB lensing maps reconstructed from the latest Planck and ACT data. We adopt a hybrid effective field theory (HEFT) model that robustly regulates the cosmological information obtainable from smaller scales, such that our cosmological constraints are reliably derived from the (predominantly) linear regime. We perform an extensive set of bandpower- and parameter-level systematics checks to ensure the robustness of our results and to characterize the uniformity of the LRG sample. We demonstrate that our results are stable to a wide range of modeling assumptions, finding excellent agreement with a linear theory analysis performed on a restricted range of scales. From a tomographic analysis of the four LRG photometric redshift bins we find that the rate of structure growth is consistent with $\Lambda$CDM with an overall amplitude that is $\simeq5-7\%$ lower than predicted by primary CMB measurements with modest $(\sim2\sigma)$ statistical significance. From the combined analysis of all four bins and their cross-correlations with Planck we obtain $S_8 = 0.765\pm0.023$, which is less discrepant with primary CMB measurements than previous DESI LRG cross Planck CMB lensing results. From the cross-correlation with ACT we obtain $S_8 = 0.790^{+0.024}_{-0.027}$, while when jointly analyzing Planck and ACT we find $S_8 = 0.775^{+0.019}_{-0.022}$ from our data alone and $\sigma_8 = 0.772^{+0.020}_{-0.023}$ with the addition of BAO data. These constraints are consistent with the latest Planck primary CMB analyses at the $\simeq 1.6-2.2\sigma$ level, and are in excellent agreement with galaxy lensing surveys.
The THESAN-ZOOM project: Population III star formation continues until the end of reionization
arXiv:2503.03806v2 Announce Type: replace
Abstract: Population III (Pop III) stars are the first stars in the Universe, forming from pristine, metal-free gas and marking the end of the cosmic dark ages. Their formation rate is expected to sharply decline after redshift $z \approx 15$ due to metal enrichment from previous generations of stars. In this paper, we analyze 14 zoom-in simulations from the THESAN-ZOOM project, which evolves different haloes from the THESAN-1 cosmological box down to redshift $z=3$. The high mass resolution of up to $142 M_\odot$ per cell in the gas phase combined with a multiphase model of the interstellar medium (ISM), radiative transfer including Lyman-Werner radiation, dust physics, and a non-equilibrium chemistry network that tracks molecular hydrogen, allows for a realistic but still approximate description of Pop III star formation in pristine gas. Our results show that Pop III stars continue to form in low-mass haloes ranging from $10^6 M_\odot$ to $10^9 M_\odot$ until the end of reionization at around $z=5$. At this stage, photoevaporation suppresses further star formation in these minihaloes, which subsequently merge into larger central haloes. Hence, the remnants of Pop III stars primarily reside in the satellite galaxies of larger haloes at lower redshifts. While direct detection of Pop III stars remains elusive, these results hint that lingering primordial star formation could leave observable imprints or indirectly affect the properties of high-redshift galaxies. Explicit Pop III feedback and specialized initial mass function modelling within the THESAN-ZOOM framework would further help interpreting emerging constraints from the James Webb Space Telescope.
JADES and BlackTHUNDER: rest-frame Balmer-line absorption and the local environment in a Little Red Dot at z = 5
arXiv:2506.14870v1 Announce Type: new
Abstract: We present a broad-line active galactic nucleus (AGN) at z = 5.077, observed with both NIRSpec/MSA and NIRSpec/IFU by the JADES and BlackTHUNDER surveys. The target exhibits all the hallmark features of a 'Little Red Dot' (LRD) AGN. The combination of spatially resolved and high-resolution spectroscopy offers deeper insight into its nature. The H$\alpha$ line has multiple components, including two broad Gaussians, yielding a black-hole mass of $\log(M_{\rm BH}/M_\odot) = 7.65$, while the narrow [O III]$\lambda$5007 gives a galaxy dynamical mass of $\log(M_{\rm dyn}/M_\odot) = 9.1$, suggesting a dynamically overmassive black hole relative to the host galaxy. The target has two satellites, and is immersed in a 7-kpc wide pool of ionized gas. A spatially detached outflow is also tentatively detected. H$\alpha$ shows strong absorption with high equivalent width (EW), ruling out a stellar origin, and with velocity and velocity dispersion of v = -13 km s$^{-1}$ and $\sigma$ = 120 km s$^{-1}$. There is tentative evidence (2.6 $\sigma$) of temporal variability in the EW of the H$\alpha$ absorber over two rest-frame months. If confirmed, this would suggest a highly dynamic environment. Notably, while the H$\alpha$ absorber is clearly visible and even dominant in the high-resolution G395H observations, it is not detected in the medium-resolution G395M data of the same epoch. This implies that the current incidence rate of absorbers in LRDs - and especially of rest-frame absorbers - may be severely underestimated, because most LRDs rely on lower-resolution spectroscopy. In this context, the high incidence rate of rest-frame absorbers in LRDs may indicate a configuration that is either intrinsically stationary, such as a rotating disc, or that exhibits time-averaged stability, such as an oscillatory 'breathing mode' accretion of cyclic expansion and contraction of the gas around the SMBH.
Impact of Galactic non-Gaussian foregrounds on CMB lensing measurements
arXiv:2505.03737v2 Announce Type: replace
Abstract: Weak gravitational lensing of the CMB has been established as a robust and powerful observable for precision cosmology. However, the impact of Galactic foregrounds, which has been studied less extensively than many other potential systematics, could in principle pose a problem for CMB lensing measurements. These foregrounds are inherently non-Gaussian and hence might mimic the characteristic signal that lensing estimators are designed to measure. We present an analysis that quantifies the level of contamination from Galactic dust in lensing measurements, focusing particularly on measurements with the Atacama Cosmology Telescope and the Simons Observatory. We employ a whole suite of foreground models and study the contamination of lensing measurements with both individual frequency channels and multifrequency combinations. We test the sensitivity of different estimators to the level of foreground non-Gaussianity, and the dependence on sky fraction and multipole range used. We find that Galactic foregrounds do not present a problem for the Atacama Cosmology Telescope experiment (the bias in the inferred CMB lensing power spectrum amplitude remains below $0.3\sigma$). For Simons Observatory, not all foreground models remain below this threshold. Although our results are conservative upper limits, they suggest that further work on characterizing dust biases and determining the impact of mitigation methods is well motivated, especially for the largest sky fractions.
Extreme AGN feedback in the fossil galaxy group SDSSTG 4436
arXiv:2506.13907v1 Announce Type: new
Abstract: Supermassive black hole feedback is the currently favoured mechanism to regulate the star formation rate of galaxies and prevent the formation of ultra-massive galaxies ($M_\star>10^{12}M_\odot$). However, the mechanism through which the outflowing energy is transferred to the surrounding medium strongly varies from one galaxy evolution model to another, such that a unified model for AGN feedback does not currently exist. The hot atmospheres of galaxy groups are highly sensitive laboratories of the feedback process, as the injected black hole energy is comparable to the binding energy of halo gas particles. Here we report multi-wavelength observations of the fossil galaxy group SDSSTG 4436. The hot atmosphere of this system exhibits a highly relaxed morphology centred on the giant elliptical galaxy NGC~3298. The X-ray emission from the system features a compact core ($<$10 kpc) and a steep increase in the entropy and cooling time of the gas, with the cooling time reaching the age of the Universe $\sim15$ kpc from the centre of the galaxy. The observed entropy profile implies a total injected energy of $\sim1.5\times10^{61}$ ergs, which given the high level of relaxation could not have been injected by a recent merging event. Star formation in the central galaxy NGC~3298 is strongly quenched and its stellar population is very old ($\sim$10.6 Gyr). The currently detected radio jets have low power and are confined within the central compact core. All the available evidence implies that this system was affected by giant AGN outbursts which excessively heated the neighbouring gas and prevented the formation of a self-regulated feedback cycle. Our findings imply that AGN outbursts can be energetic enough to unbind gas particles and lead to the disruption of cool cores.
Overmassive black holes in the early Universe can be explained by gas-rich, dark matter-dominated galaxies
arXiv:2506.13852v1 Announce Type: new
Abstract: JWST has revealed the apparent evolution of the black hole (BH)-stellar mass ($M_\mathrm{BH}$-$M_\rm{\ast}$) relation in the early Universe, while remaining consistent the BH-dynamical mass ($M_\mathrm{BH}$-$M_\mathrm{dyn}$) relation. We predict BH masses for $z>3$ galaxies in the high-resolution THESAN-ZOOM simulations by assuming the $M_\mathrm{BH}$-$M_\mathrm{dyn}$ relation is fundamental. Even without live BH modelling, our approach reproduces the JWST-observed $M_\mathrm{BH}$ distribution, including overmassive BHs relative to the local $M_\mathrm{BH}$-$M_\mathrm{\ast}$ relation. We find that $M_\mathrm{BH}/M_\mathrm{\ast}$ declines with $M_\mathrm{\ast}$, evolving from $\sim$0.1 at $M_\mathrm{\ast}=10^6\,\mathrm{M_\odot}$ to $\sim$0.01 at $M_\mathrm{\ast}=10^{10.5}\,\mathrm{M_\odot}$. This trend reflects the dark matter ($f_\mathrm{DM}$) and gas fractions ($f_\mathrm{gas}$), which decrease with $M_\mathrm{\ast}$ but show little redshift evolution down to $z=3$, resulting in small $M_\mathrm{\ast}/M_\mathrm{dyn}$ ratios and thus overmassive BHs in low-mass galaxies. We use $\texttt{Prospector}$-derived stellar masses and star-formation rates to infer $f_\mathrm{gas}$ across 48,022 galaxies in JADES at $3