skip to content

Kavli Institute for Cosmology, Cambridge

 

cosmocnc: A fast, flexible, and accurate galaxy cluster number, count likelihood code for cosmology

Fri, 15/03/2024 - 10:56
arXiv:2403.09589v1 Announce Type: new Abstract: We introduce cosmocnc, a Python package for computing the number count likelihood of galaxy cluster catalogues in a fast, flexible and accurate way. cosmocnc offers three types of likelihoods: an unbinned, a binned, and an extreme value likelihood. It also supports the addition of stacked cluster data, which is modelled consistently with the cluster catalogue. The unbinned likelihood, which is the main focus of the code, can take an arbitrary number of mass observables as input and deal with several complexities in the data, such as variations in the properties of the cluster observable across the survey footprint, the possibility of different clusters having measurements for different combinations of mass observables, redshift measurement uncertainties, and the presence on unconfirmed detections in the catalogue. If there are more than one mass observables, the unbinned likelihood is computed with the backward convolutional approach, a novel approach that is first implemented in cosmocnc. After developing the likelihood formalism and describing its implementation, we validate the code with synthetic Simons-Observatory-like catalogues, finding excellent agreement between their properties and cosmocnc's predictions and obtaining constraints on cosmological and scaling relation parameters featuring negligible biases. cosmocnc is publicly available at github.com/inigozubeldia/cosmocnc.

Supermassive Black Hole Winds in X-rays -- SUBWAYS. III. A population study on Ultra-Fast Outflows

Fri, 15/03/2024 - 10:55
arXiv:2403.09538v1 Announce Type: new Abstract: The detection of blue-shifted absorption lines likely associated with ionized Iron K-shell transitions in the X-ray spectra of many Active Galactic Nuclei (AGN) suggests the presence of a highly ionized gas outflowing with mildly relativistic velocities (0.03c-0.6c), named Ultra-Fast Outflow (UFO). Within the SUBWAYS project we characterized these winds starting from a sample of 22 radio-quiet quasars at 0.1

SIDE-real: Truncated marginal neural ratio estimation for Supernova Ia Dust Extinction with real data

Wed, 13/03/2024 - 14:00
arXiv:2403.07871v1 Announce Type: new Abstract: We present the first fully simulation-based hierarchical analysis of the light curves of a population of low-redshift type Ia supernovae (SNae Ia). Our hardware-accelerated forward model, released in the Python package slicsim, includes stochastic variations of each SN's spectral flux distribution (based on the pre-trained BayeSN model), extinction from dust in the host and in the Milky Way, redshift, and realistic instrumental noise. By utilising truncated marginal neural ratio estimation (TMNRE), a neural network-enabled simulation-based inference technique, we implicitly marginalise over 4000 latent variables (for a set of $\approx 100$ SNae Ia) to efficiently infer SN Ia absolute magnitudes and host-galaxy dust properties at the population level while also constraining the parameters of individual objects. Amortisation of the inference procedure allows us to obtain coverage guarantees for our results through Bayesian validation and frequentist calibration. Furthermore, we show a detailed comparison to full likelihood-based inference, implemented through Hamiltonian Monte Carlo, on simulated data and then apply TMNRE to the light curves of 86 SNae Ia from the Carnegie Supernova Project, deriving marginal posteriors in excellent agreement with previous work. Given its ability to accommodate arbitrarily complex extensions to the forward model -- e.g. different populations based on host properties, redshift evolution, complicated photometric redshift estimates, selection effects, and non-Ia contamination -- without significant modifications to the inference procedure, TMNRE has the potential to become the tool of choice for cosmological parameter inference from future, large SN Ia samples.

Strong asymptotic giant branch stars' spectral features in distant quiescent galaxies: Impact on galaxy evolution

Wed, 13/03/2024 - 13:53
arXiv:2403.07414v1 Announce Type: new Abstract: Age-dating and weighting stellar populations in galaxies at various cosmic epochs are essential steps to study galaxy formation through cosmic times. Evolutionary population synthesis models with different input physics are used towards this aim. In particular, the contribution from the thermally pulsing asymptotic-giant-branch (TP-AGB) stellar phase, which peaks for intermediate-age 0.6-2 Gyr systems, has been debated upon for decades. Here we report the detection of strong cool star signatures in the rest-frame near-infrared spectra of three young (~1 Gyr), massive (~10^10 Msun) quiescent galaxies at large look-back time, z=1-2, using JWST/NIRSpec. The co-existence of oxygen- and carbon-type absorption features, spectral edges and features from rare species such as Vanadium, and possibly Zirconium, reveal a strong contribution from TP-AGB stars. Population synthesis models with significant TP-AGB contribution reproduce the observations considerably better than those with weak TP-AGB, which are those commonly used. These findings call for revisions of published stellar population fitting results, pointing to lower masses and younger ages, with additional implications on cosmic dust production and chemical enrichment. These results will stimulate new generations of improved models informed by these and future observations.

Hawai`i Supernova Flows: A Peculiar Velocity Survey Using Over a Thousand Supernovae in the Near-Infrared

Tue, 12/03/2024 - 14:06
arXiv:2403.05620v1 Announce Type: new Abstract: We introduce the Hawai`i Supernova Flows project and present summary statistics of the first 1218 astronomical transients observed, 669 of which are spectroscopically classified Type Ia Supernovae (SNe Ia). Our project is designed to obtain systematics-limited distances to SNe Ia while consuming minimal dedicated observational resources. This growing sample will provide increasing resolution into peculiar velocities as a function of position on the sky and redshift, allowing us to more accurately map the structure of dark matter. This can be used to derive cosmological parameters such as $\sigma_8$ and can be compared with large scale flow maps from other methods such as luminosity-line width or luminosity-velocity dispersion correlations in galaxies. Additionally, our photometry will provide a valuable test bed for analyses of SNe Ia incorporating near-infrared data. In this survey paper, we describe the methodology used to select targets, collect and reduce data, and calculate distances.

The NIRSpec Wide GTO Survey

Mon, 11/03/2024 - 11:37
arXiv:2403.05506v1 Announce Type: new Abstract: The Near-infrared Spectrograph (NIRSpec) on the James Webb Space Telescope is uniquely suited to studying galaxies in the distant Universe with its combination of multi-object capabilities and sensitivity over a large range in wavelength (0.6-5.3 microns). Here we present the NIRSpec Wide survey, part of the NIRSpec Instrument Science Team's Guaranteed Time Observations, using NIRSpec's microshutter array to obtain spectra of more than 3200 galaxies at $z>1$ at both low- and high-resolution ($R\approx100$ and 2700) for a total of 105 hours. With 31 pointings covering $\approx$320 arcmin$^2$ across the five CANDELS fields with exquisite ancillary photometry from the Hubble Space Telescope, the NIRSpec Wide survey represents a fast and efficient way of using JWST to probe galaxies in the early Universe. Pointing centers are determined to maximize the observability of the rarest, high-value sources. Subsequently, the microshutter configurations are optimized to observe the maximum number of "census" galaxies with a selection function based primarily on HST/F160W magnitude, photometric/slitless grism redshift, and predicted \ha\ flux tracing the bulk of the galaxy population at cosmic noon ($z_{\rm med}=2.0$). We present details on the survey strategy, the target selection, an outline of the motivating science cases, and discuss upcoming public data releases to the community.

PHANGS-HST catalogs for $\sim$100,000 star clusters and compact associations in 38 galaxies: I. Observed properties

Mon, 11/03/2024 - 11:17
arXiv:2403.04901v1 Announce Type: new Abstract: We present the largest catalog to-date of star clusters and compact associations in nearby galaxies. We have performed a V-band-selected census of clusters across the 38 spiral galaxies of the PHANGS-HST Treasury Survey, and measured integrated, aperture-corrected NUV-U-B-V-I photometry. This work has resulted in uniform catalogs that contain $\sim$20,000 clusters and compact associations which have passed human inspection and morphological classification, and a larger sample of $\sim$100,000 classified by neural network models. Here, we report on the observed properties of these samples, and demonstrate that tremendous insight can be gained from just the observed properties of clusters, even in the absence of their transformation into physical quantities. In particular, we show the utility of the UBVI color-color diagram, and the three principal features revealed by the PHANGS-HST cluster sample: the young cluster locus, the middle-age plume, and the old globular cluster clump. We present an atlas of maps of the 2D spatial distribution of clusters and compact associations in the context of the molecular clouds from PHANGS-ALMA. We explore new ways of understanding this large dataset in a multi-scale context by bringing together once-separate techniques for the characterization of clusters (color-color diagrams and spatial distributions) and their parent galaxies (galaxy morphology and location relative to the galaxy main sequence). A companion paper presents the physical properties: ages, masses, and dust reddenings derived using improved spectral energy distribution (SED) fitting techniques.

200,000 Candidate Very Metal-poor Stars in Gaia DR3 XP Spectra

Fri, 08/03/2024 - 16:22
arXiv:2303.17676v2 Announce Type: replace Abstract: Very metal-poor stars ($\rm[Fe/H] $ 16) and obtain 38,000/41,000 additional metal-poor candidates with purity 29\%/52\%, respectively. We make our metal-poor star catalogs publicly available, for further exploration of the metal-poor Milky Way.

Gas-phase metallicity gradients in galaxies at $z \sim 6-8$

Fri, 08/03/2024 - 15:56
arXiv:2403.03977v1 Announce Type: new Abstract: The study of gas-phase metallicity and its spatial distribution at high redshift is crucial to understand the processes that shaped the growth and evolution of galaxies in the early Universe. Here we study the spatially resolved metallicity in three systems at $z\sim6-8$, namely A2744-YD4, BDF-3299, and COSMOS24108, with JWST NIRSpec IFU low-resolution ($R$ $\sim$ 100) spectroscopic observations. These are among the highest-$z$ sources in which metallicity gradients have been probed so far. Each of these systems hosts several spatial components in the process of merging within a few kiloparsecs, identified from the rest-frame UV and optical stellar continuum and ionised gas emission line maps. The sources have heterogeneous properties, with stellar masses log($M_*/M_\odot) \sim 7.6-9.3$, star formation rates (SFRs) $\sim1-15$ $M_\odot$ yr$^{-1}$, and gas-phase metallicities 12+log(O/H) $\sim 7.7-8.3$, which exhibit a large scatter within each system. Their properties are generally consistent with those of the highest-redshift samples to date ($z\sim3-10$), though the sources in A2744-YD4 and COSMOS24108 are at the high end of the mass-metallicity relation (MZR) defined by the $z\sim3-10$ sources. Moreover, the targets in this work follow the predicted slope of the MZR at $z\sim 6-8$ from most cosmological simulations. The gas-phase metallicity gradients are consistent with being flat in the main sources of each system. Flat metallicity gradients are thought to arise from gas mixing processes on galaxy scales, such as mergers or galactic outflows and SN winds driven by intense stellar feedback, which wash out any gradient formed in the galaxy. The existence of flat gradients at $z\sim6-8$ sets also important constraints on cosmological simulations, whose predictions on the cosmic evolution of metallicity gradients often differ significantly, especially at high redshift.

EPOCHS IV: SED Modelling Assumptions and their impact on the Stellar Mass Function at 6.5 < z < 13.5 using PEARLS and public JWST observations

Thu, 07/03/2024 - 10:33
arXiv:2403.03908v1 Announce Type: new Abstract: We utilize deep JWST NIRCam observations for the first direct constraints on the Galaxy Stellar Mass Function (GSMF) at z>10. Our EPOCHS v1 sample includes 1120 galaxy candidates at 6.5 9 than some studies predict, suggesting a rapid buildup of stellar mass in the early Universe. We find no incompatibility between our results and those of standard cosmological models, as suggested previously, although the most massive galaxies may require a high star formation efficiency. We find that the 'Little Red Dot' galaxies dominate the z=7 GSMF at high-masses, necessitating a better understanding of the relative contributions of AGN and stellar emission. We show that assuming a theoretically motivated top-heavy IMF reduces stellar mass by 0.5 dex without affecting fit quality, but our results remain consistent with existing cosmological models with a standard IMF.

A dormant, overmassive black hole in the early Universe

Thu, 07/03/2024 - 10:32
arXiv:2403.03872v1 Announce Type: new Abstract: Recent observations have found a large number of supermassive black holes already in place in the first few hundred million years after Big Bang. The channels of formation and growth of these early, massive black holes are not clear, with scenarios ranging from heavy seeds to light seeds experiencing bursts of high accretion rate. Here we present the detection, from the JADES survey, of broad Halpha emission in a galaxy at z=6.68, which traces a black hole with mass of ~ 4 * 10^8 Msun and accreting at a rate of only 0.02 times the Eddington limit. The host galaxy has low star formation rate (~ 1 Msun/yr, a factor of 3 below the star forming main sequence). The black hole to stellar mass ratio is ~ 0.4, i.e. about 1,000 times above the local relation, while the system is closer to the local relations in terms of dynamical mass and velocity dispersion of the host galaxy. This object is most likely the tip of the iceberg of a much larger population of dormant black holes around the epoch of reionisation. Its properties are consistent with scenarios in which short bursts of super-Eddington accretion have resulted in black hole overgrowth and massive gas expulsion from the accretion disk; in between bursts, black holes spend most of their life in a dormant state.

The ALMA-CRISTAL survey: Extended [CII] emission in an interacting galaxy system at z ~ 5.5

Thu, 07/03/2024 - 10:20
arXiv:2403.03379v1 Announce Type: new Abstract: The ALMA [CII] Resolved Ism in STar-forming gALaxies (CRISTAL) survey is a Cycle 8 ALMA Large Programme that studies the cold gas component of high-redshift galaxies. Its sub-arcsecond resolution observations are key to disentangling physical mechanisms that shape galaxies during cosmic dawn. In this paper, we explore the morphology and kinematics of the cold gas, star-forming, and stellar components in the star-forming main-sequence galaxy CRISTAL-05/HZ3, at z = 5.54. Our analysis includes 0.3" spatial resolution (~2 kpc) ALMA observations of the [CII] line. While CRISTAL-05 was previously classified as a single source, our observations reveal that the system is a close interacting pair surrounded by an extended component of carbon-enriched gas. This is imprinted in the disturbed elongated [CII] morphology and the separation of the two components in the position-velocity diagram (~100 km/s). The central region is composed of two components, named C05-NW and C05-SE, with the former being the dominant one. A significant fraction of the [CII] arises beyond the close pair up to 10 kpc, while the regions forming new massive stars and the stellar component seem compact (r_[CII] ~ 4 r_UV), as traced by rest-frame UV and optical imaging obtained with the Hubble Space Telescope and the James Webb Space Telescope. Our kinematic model, using the DYSMALpy software, yields a minor contribution of dark matter of C05-NW within a radius of ~2x Reff. Finally, we explore the resolved [CII]/FIR ratios as a proxy for shock-heating produced by this merger. We argue that the extended [CII] emission is mainly caused by the merger, which could not be discerned with lower-resolution observations. Our work emphasizes the need for high-resolution observations to fully characterize the dynamic stages of infant galaxies and the physical mechanisms that drive the metal enrichment of the circumgalactic medium.

The nature of diffuse ionised gas in star-forming galaxies

Thu, 07/03/2024 - 10:04
arXiv:2403.03243v1 Announce Type: new Abstract: We present an analysis of the diffuse ionised gas (DIG) in a high-resolution simulation of an isolated Milky Way-like galaxy, incorporating on-the-fly radiative transfer and non-equilibrium thermochemistry. We utilise the Monte-Carlo radiative transfer code COLT to self-consistently obtain ionisation states and line emission in post-processing. We find a clear bimodal distribution in the electron densities of ionised gas ($n_{\rm e}$), allowing us to define a threshold of $n_{\rm e}=10\,\mathrm{cm}^{-3}$ to differentiate DIG from HII regions. The DIG is primarily ionised by stars aged 5-25 Myr, which become exposed directly to low-density gas after HII regions have been cleared. Leakage from recently formed stars ($

GA-NIFS: NIRSpec reveals evidence for non-circular motions and AGN feedback in GN20

Wed, 06/03/2024 - 12:40
arXiv:2403.03192v1 Announce Type: new Abstract: We present rest-frame optical data of the z~4 sub-millimeter galaxy GN20 obtained with JWST/NIRSpec in integral field spectroscopy (IFS) mode. The H$\alpha$ emission is asymmetric and clumpy and extends over a projected distance of more than 15 kpc. To first order, the large-scale ionised gas kinematics are consistent with a turbulent ($\sigma\sim90$ km/s), rotating disc ($v_{\rm rot}\sim500$ km/s), congruent with previous studies of its molecular and ionised gas kinematics. However, we also find clear evidence for non-circular motions in the H$\alpha$ kinematics. We discuss their possible connection with various scenarios, such as external perturbations, accretion or radial flows. In the centre of GN20, we find broad line emission (FWHM $\sim1000-2000$ km/s) in the H$\alpha$+[N II] complex, suggestive of fast, AGN-driven winds or, alternatively, of the broad-line region of an active black hole. Elevated values of [N II]$\lambda6583$/H$\alpha>0.4$ and EW(H$\alpha)>6$ \r{A}, throughout large parts of GN20 suggest that feedback from the active black hole is able to photo-ionise the interstellar medium. Our data corroborates that GN20 offers a unique opportunity to observe key processes in the evolution of the most massive present-day galaxies acting in concert, over 12 billion years ago.

GA-NIFS: Early-stage feedback in a heavily obscured AGN at $z=4.76$

Mon, 04/03/2024 - 11:05
arXiv:2309.05713v2 Announce Type: replace Abstract: Dust-obscured galaxies are thought to represent an early evolutionary phase of massive galaxies in which the active galactic nucleus (AGN) is still deeply buried in significant amounts of dusty material and its emission is strongly suppressed. The unprecedented sensitivity of the James Webb Space Telescope enables us for the first time to detect the rest-frame optical emission of heavily obscured AGN and unveil the properties of the hidden accreting super-massive black holes (BHs). In this work, we present the JWST/NIRSpec IFS data of ALESS073.1, a massive, dusty, star-forming galaxy at $z = 4.76$ hosting an AGN at its center. The detection of a very broad $H_\alpha$ emission associated with the Broad Line Region (BLR) confirms the presence of a BH ($\log(M_{BH}/M_\odot)>8.7$) accreting at less than 15\% of its Eddington limit and classifies the target as a Type 1 AGN. The rest-frame optical emission lines also reveal a fast ionized gas outflow marginally resolved in the galaxy center. The high sensitivity of NIRSpec allows us to perform the kinematic analysis of the narrow H$\alpha$ component which indicates that the warm ionized gas velocity field is consistent with disk rotation. We also find that, in the innermost nuclear regions ($

GN-z11: The environment of an AGN at $z=$10.603

Mon, 04/03/2024 - 11:02
arXiv:2306.09142v2 Announce Type: replace Abstract: Recent observations with the \textit{James Webb} Space Telescope (JWST) have further refined the spectroscopic redshift of GN-z11, one of the most distant galaxies identified with the \textit{Hubble} Space Telescope (HST) at $z=10.603$. The presence of extremely dense gas ($>10^{10}$ cm$^{-3}$), the detection of high-ionisation lines and of CII*1335 emission, as well as the presence of an ionisation cone, indicate that GN-z11 also hosts an Active Galactic Nucleus (AGN). Further photometric and spectroscopic follow-up demonstrates that it lies in a large-scale, overdense structure with possible signatures of Population III (PopIII) stars in its halo. Surprisingly, Ly$\alpha$ has also been detected despite the expected largely neutral inter-galactic medium at such a redshift. We exploit recent JWST/NIRSpec IFU observations to demonstrate that the Ly$\alpha$ emission in GN-z11 is part of an extended halo with a minimum size of 0.8--3.2 kpc, depending on the definition used to derive the halo size. The surface brightness of the Ly$\alpha$ halo around GN-z11 appears consistent with Ly$\alpha$ halos observed around $z\sim6$ quasars. At the wavelength of Ly$\alpha$ at $z\sim$10.6, we identify three other emission line candidates within the IFU Field-of-View with no UV rest-frame counterpart visible in deep images from the JWST/NIRCam. If confirmed, this could be the first evidence that the local region of GN-z11 represents a candidate protocluster core, forming just 400 Myr after the Big Bang. We give a first estimate of the dark matter halo mass of this structure ($M_h$=2.96$^{+0.44}_{-0.39} \times$10$^{10}$ M$_{\odot}$), consistent with a Coma-like cluster progenitor.

On the observability and identification of Population III galaxies with JWST

Mon, 04/03/2024 - 11:01
arXiv:2211.02038v2 Announce Type: replace Abstract: We utilise theoretical models of Population III stellar+nebular spectra to investigate the prospects of observing and accurately identifying Population III galaxies with JWST using both deep imaging and spectroscopy. We investigate a series of different colour cuts, finding that a combination of NIRCam and MIRI photometry through the F444W-F560W, F560W-F770W colours offers the most robust identifier of potential $z=8$ Pop III candidates. We calculate that NIRCam will have to reach $\sim$28.5-30.0 AB mag depths (1-20 h), and MIRI F560W must reach $\sim$27.5-29.0 AB mag depths (10-100 h) to achieve $5\sigma$ continuum detections of $M_* = 10^6~\mathrm{M}_\odot$ Pop III galaxies at $z=8$. We also discuss the prospects of identifying Pop III candidates through slitless and NIRSpec spectroscopic surveys that target Ly$\alpha$, H$\beta$ and/or He II $\lambda 1640$. We find small differences in the H$\beta$ rest-frame equivalent width (EW) between Pop III and non-Pop III galaxies, rendering this diagnostic likely impractical. Instead, we find that the detection of high EW He II $\lambda 1640$ emission will serve as the definitive Pop III identifier, requiring (ultra-)deep integrations (10-250 h) with NIRSpec/G140M for $M_*=10^6~\mathrm{M}_\odot$ Pop III galaxies at $z=8$. However, MIRI F770W detections of Pop III galaxies will require substantial gravitational lensing ($\mu=10$) and/or fortuitous imaging of exceptionally massive ($M_* = 10^7~\mathrm{M}_\odot$) Pop III galaxies. Thus, NIRCam medium-band imaging surveys that can search for high EW He II $\lambda 1640$ emitters in photometry may perhaps be a viable alternative for finding Pop III candidates.

Quijote-PNG: Optimizing the summary statistics to measure Primordial non-Gaussianity

Mon, 04/03/2024 - 10:54
arXiv:2403.00490v1 Announce Type: new Abstract: We apply a suite of different estimators to the Quijote-PNG halo catalogues to find the best approach to constrain Primordial non-Gaussianity (PNG) at non-linear cosmological scales, up to $k_{\rm max} = 0.5 \, h\,{\rm Mpc}^{-1}$. The set of summary statistics considered in our analysis includes the power spectrum, bispectrum, halo mass function, marked power spectrum, and marked modal bispectrum. Marked statistics are used here for the first time in the context of PNG study. We perform a Fisher analysis to estimate their cosmological information content, showing substantial improvements when marked observables are added to the analysis. Starting from these summaries, we train deep neural networks (NN) to perform likelihood-free inference of cosmological and PNG parameters. We assess the performance of different subsets of summary statistics; in the case of $f_\mathrm{NL}^\mathrm{equil}$, we find that a combination of the power spectrum and a suitable marked power spectrum outperforms the combination of power spectrum and bispectrum, the baseline statistics usually employed in PNG analysis. A minimal pipeline to analyse the statistics we identified can be implemented either with our ML algorithm or via more traditional estimators, if these are deemed more reliable.

Particle initialization effects on Lyman-$\alpha$ forest statistics in cosmological SPH simulations

Fri, 01/03/2024 - 11:33
arXiv:2310.07767v2 Announce Type: replace Abstract: Confronting measurements of the Lyman-$\alpha$ forest with cosmological hydrodynamical simulations has produced stringent constraints on models of particle dark matter and the thermal and ionization state of the intergalactic medium. We investigate the robustness of such models of the Lyman-$\alpha$ forest, focussing on the effect of particle initial conditions on the Lyman-$\alpha$ forest statistics in cosmological SPH simulations. We study multiple particle initialization algorithms in simulations that are designed to be identical in other respects. In agreement with the literature, we find that the correct linear theory evolution is obtained when a glass-like configuration is used for initial unperturbed gas particle positions alongside a regular grid configuration for dark matter particles and the use of non-identical initial density perturbations for gas and dark matter. However, we report that this introduces a large scale-dependent distortion in the one-dimensional Lyman-$\alpha$ transmission power spectrum at small scales ($k > 0.05$ s/km). The effect is close to $50\%$ at $k\sim 0.1$ s/km, and persists at higher resolution. This can severely bias inferences in parameters such as the dark matter particle mass. By considering multiple initial conditions codes and their variations, we also study the impact of a variety of other assumptions and algorithmic choices, such as adaptive softening, background radiation density, particle staggering, and perturbation theory accuracy, on the matter power spectrum, the Lyman-$\alpha$ flux power spectrum, and the Lyman-$\alpha$ flux PDF. This work reveals possible pathways towards more accurate theoretical models of the Lyman-$\alpha$ forest to match the quality of upcoming measurements.

Star formation efficiency across large-scale galactic environments

Fri, 01/03/2024 - 11:33
arXiv:2309.01277v2 Announce Type: replace Abstract: Environmental effects on the evolution of galaxies have been one of the leading questions in galaxy studies for decades. In this work, we investigate the relationship between the star formation activity of galaxies and their environmental matter density using the cosmological hydrodynamic simulation Simba. The star formation activity indicators we explore include the star formation efficiency (SFE), specific star formation rate (sSFR) and molecular hydrogen mass fraction ($f^*_{H_2}$) and the environment is considered as the large-scale environmental matter density, calculated based on the stellar mass of nearby galaxies on a 1 Mpc/h grid using the cloud in cell (CIC) method. Our sample includes galaxies with $9 1.5$). We present a scaling relation for the depletion time of molecular hydrogen (${t_{depl}}=1/SFE$) as a function of galaxy parameters including environmental density. Our findings provide a framework for quantifying the environmental effects on the star formation activities of galaxies as a function of stellar mass and redshift. The most significant environmental dependence is seen at later cosmic times ($z