skip to content

Kavli Institute for Cosmology, Cambridge

 

Dark Energy Survey Deep Field photometric redshift performance and training incompleteness assessment

Tue, 27/02/2024 - 11:22
arXiv:2312.09721v3 Announce Type: replace Abstract: Context. The determination of accurate photometric redshifts (photo-zs) in large imaging galaxy surveys is key for cosmological studies. One of the most common approaches are machine learning techniques. These methods require a spectroscopic or reference sample to train the algorithms. Attention has to be paid to the quality and properties of these samples since they are key factors in the estimation of reliable photo-zs. Aims. The goal of this work is to calculate the photo-zs for the Y3 DES Deep Fields catalogue using the DNF machine learning algorithm. Moreover, we want to develop techniques to assess the incompleteness of the training sample and metrics to study how incompleteness affects the quality of photometric redshifts. Finally, we are interested in comparing the performance obtained with respect to the EAzY template fitting approach on Y3 DES Deep Fields catalogue. Methods. We have emulated -- at brighter magnitude -- the training incompleteness with a spectroscopic sample whose redshifts are known to have a measurable view of the problem. We have used a principal component analysis to graphically assess incompleteness and to relate it with the performance parameters provided by DNF. Finally, we have applied the results about the incompleteness to the photo-z computation on Y3 DES Deep Fields with DNF and estimated its performance. Results. The photo-zs for the galaxies on DES Deep Fields have been computed with the DNF algorithm and added to the Y3 DES Deep Fields catalogue. They are available at https://des.ncsa.illinois.edu/releases/y3a2/Y3deepfields. Some techniques have been developed to evaluate the performance in the absence of "true" redshift and to assess completeness. We have studied... (Partial abstract)

Consistent particle physics in metric-affine gravity from extended projective symmetry

Mon, 26/02/2024 - 10:24
arXiv:2402.14917v1 Announce Type: cross Abstract: It is well-known that the Einstein-Hilbert action exhibits a projective invariance in metric-affine gravity, generated by a single vector (just like diffeomorphisms). However, this symmetry offers no protection against formulating inconsistent models, e.g., with ghost and strong coupling problems. In this letter, we observe that non-minimal kinetic terms of Dirac spinors point to a new extended projective (EP) symmetry generated by a pair of vectors. We prove that the most general EP-invariant theory (at most quadratic in field strengths) is naturally free from all pathologies. Its spectrum only features the massless graviton and a single additional scalar field arising from the square of the Holst curvature. The scalar potential is suitable for inflation and our model moreover contains effective 4-Fermi interactions capable of producing fermionic dark matter. Finally, we point out an alternative double-vector symmetry that similarly leads to a healthy theory with a propagating vector field.

JADES: The production and escape of ionizing photons from faint Lyman-alpha emitters in the epoch of reionization

Wed, 21/02/2024 - 11:50
arXiv:2306.04536v2 Announce Type: replace Abstract: We present the properties of 17 faint Ly$\alpha$ emitting galaxies (LAEs) at $z>5.8$ from the JWST Advanced Deep Extragalactic Survey (JADES) in the Hubble Ultra Deep Field/GOODS-S. These LAEs span a redshift range $z\approx5.8-8.0$ and a UV magnitude range $M_{UV}\approx-17$ to $-20.6$, with the Ly$\alpha$ equivalent width (EW) in the range $\approx 25-350$ \AA. The detection of other rest-optical emission lines in the spectra of these LAEs enables the determination of accurate systemic redshifts and Ly{\alpha} velocity offsets, as well as the physical and chemical composition of their stars and interstellar media. These faint LAEs are consistent with metal-poor systems with high ionization parameters, similar to the general galaxy population at $z>6$. We measured an average ionizing photon production efficiency, log($\xi_\rm{ion}$/erg$^{-1}$ Hz) $\approx25.57$ across our LAEs, which does not evolve strongly with redshift. We report an anti-correlation between the Ly$\alpha$ escape fraction (f_\rm{esc}) and the velocity offset from systemic redshift, consistent with model expectations. We further find that the strength and velocity offset of Ly$\alpha$ are neither correlated with galaxy spectroscopic properties nor with $\xi_\rm{ion}$. We find a decrease in $f_\rm{esc}$(Ly$\alpha$) with redshift, indicative of decreasing sizes of ionized bubbles around LAEs at high redshifts. We used a range of galaxy properties to predict Lyman continuum $f_\rm{esc}$ for our LAEs, finding that the ionizing photon output into the intergalactic medium remains roughly constant across the observed Ly$\alpha$ EW, showing a mild increase at fainter M$_{UV}$ and at higher redshifts. We derived correlations between the ionizing photon output from LAEs and $M_{UV}$, Ly$\alpha$ EW and redshifts, which can be used to constrain the ionizing photon contribution of LAEs at $z > 6$ towards cosmic reionization.

Data-Space Validation of High-Dimensional Models by Comparing Sample Quantiles

Mon, 19/02/2024 - 11:16
arXiv:2402.00930v2 Announce Type: replace Abstract: We present a simple method for assessing the predictive performance of high-dimensional models directly in data space when only samples are available. Our approach is to compare the quantiles of observables predicted by a model to those of the observables themselves. In cases where the dimensionality of the observables is large (e.g. multiband galaxy photometry), we advocate that the comparison is made after projection onto a set of principal axes to reduce the dimensionality. We demonstrate our method on a series of two-dimensional examples. We then apply it to results from a state-of-the-art generative model for galaxy photometry (pop-cosmos; arXiv:2402.00935) that generates predictions of colors and magnitudes by forward simulating from a 16-dimensional distribution of physical parameters represented by a score-based diffusion model. We validate the predictive performance of this model directly in a space of nine broadband colors. Although motivated by this specific example, the techniques we present will be broadly useful for evaluating the performance of flexible, non-parametric population models of this kind, and can be readily applied to any setting where two sets of samples are to be compared.

Simulations of spin-driven AGN jets in gas-rich galaxy mergers

Mon, 19/02/2024 - 11:13
arXiv:2306.07316v2 Announce Type: replace Abstract: In this work, we use hydrodynamical simulations to explore the effects of kinetic AGN jet feedback on the progression and outcome of the major merger of two isolated, gas-rich galaxies. We present simulations that use the moving-mesh code AREPO to follow the progression of the merger through first passage and up to the final coalescence, modelling the black holes at the centres of both of the merging galaxies using our prescription for black hole accretion via an $\alpha$-disc and feedback in the form of a spin-driven jet. We find that the jets drive large-scale, multiphase outflows which launch large quantities of cold gas out to distances greater than 100 kpc and with velocities that reach $\sim 2500 \, {\rm km \, s^{-1}}$. Gas in the outflows that decelerates, cools and falls back on the galaxies can provide a rich source of fuel for the black hole, leading to intense episodes of jet activity in which the jet can become significantly misaligned. The presence of AGN jets affects the growth of the stellar component: star formation is moderately suppressed at all times during the merger and the peak of the star formation rate, attained during the final coalescence of the galaxies, is reduced by a factor of $\sim 2$. Analysis of simulations such as these will play a central role in making precise predictions for multimessenger investigations of dual radio-AGN, which next-generation observational facilities such as LISA, Athena and SKA will make possible.

Dark Energy Survey: Galaxy Sample for the Baryonic Acoustic Oscillation Measurement from the Final Dataset

Mon, 19/02/2024 - 11:04
arXiv:2402.10697v1 Announce Type: new Abstract: In this paper we present and validate the galaxy sample used for the analysis of the baryon acoustic oscillation (BAO) signal in the Dark Energy Survey (DES) Y6 data. The definition is based on a color and redshift-dependent magnitude cut optimized to select galaxies at redshifts higher than 0.6, while ensuring a high-quality photo-$z$ determination. The optimization is performed using a Fisher forecast algorithm, finding the optimal $i$-magnitude cut to be given by $i$

Dark Energy Survey: A 2.1% measurement of the angular Baryonic Acoustic Oscillation scale at redshift $z_{\rm eff}$=0.85 from the final dataset

Mon, 19/02/2024 - 11:03
arXiv:2402.10696v1 Announce Type: new Abstract: We present the angular diameter distance measurement obtained with the Baryonic Acoustic Oscillation feature from galaxy clustering in the completed Dark Energy Survey, consisting of six years (Y6) of observations. We use the Y6 BAO galaxy sample, optimized for BAO science in the redshift range 0.60.75 from any survey and the most precise measurement at any redshift from photometric surveys. The analysis was performed blinded to the BAO position and it is shown to be robust against analysis choices, data removal, redshift calibrations and observational systematics.

On the Constraints on Superconducting Cosmic Strings from 21-cm Cosmology

Fri, 16/02/2024 - 11:24
arXiv:2312.08828v2 Announce Type: replace Abstract: Constraints on the potential properties of superconducting cosmic strings provide an indirect probe of physics beyond the standard model at energies inaccessible to terrestrial particle colliders. In this study, we perform the first joint Bayesian analysis to extract constraints on superconducting cosmic strings from current 21-cm signal measurements while accounting rigorously for the uncertainties in foregrounds and high redshift astrophysics. We include the latest publicly available 21-cm power spectrum upper limits from HERA, 21-cm global signal data from SARAS 3, and the synergistic probe of the unresolved X-ray background in our final analysis. This paper thus constitutes the first attempt to use 21-cm power spectrum data to probe cosmic strings. In contrast to previous works, we find no strong constraints can be placed on superconducting cosmic strings from current 21-cm measurements. This is because of uncertainties in the X-ray emission efficiency of the first galaxies, with X-ray emissivities greater than $3 \times 10^{40}$erg s$^{-1}$ M$_{\odot}^{-1}$ yr able to mask the presence of cosmic strings in the 21-cm signal. We conclude by discussing the prospects for future constraints from definitive 21-cm signal measurements and argue that the recently proposed soft photon heating should be cause for optimism due to its potential to break degeneracies that would have otherwise made the signatures of cosmic strings difficult to distinguish from those of astrophysical origin.

Unveiling Dark Matter free-streaming at the smallest scales with high redshift Lyman-alpha forest

Fri, 16/02/2024 - 11:22
arXiv:2309.04533v2 Announce Type: replace Abstract: This study introduces novel constraints on the free-streaming of thermal relic warm dark matter (WDM) from Lyman-$\alpha$ forest flux power spectra. Our analysis utilises a high-resolution, high-redshift sample of quasar spectra observed using the HIRES and UVES spectrographs ($z=4.2-5.0$). We employ a Bayesian inference framework and a simulation-based likelihood that encompasses various parameters including the free-streaming of dark matter, cosmological parameters, the thermal history of the intergalactic medium, and inhomogeneous reionization, to establish lower limits on the mass of a thermal relic WDM particle of $5.7\;\mathrm{keV}$ (at 95\% C.L.). This result surpasses previous limits from the Lyman-$\alpha$ forest through reduction of the measured uncertainties due to a larger statistical sample and by measuring clustering to smaller scales ($k_{\rm max}=0.2\;\mathrm{km^{-1}\,s}$). The approximately two-fold improvement due to the expanded statistical sample suggests that the effectiveness of Lyman-$\alpha$ forest constraints on WDM models at high redshifts are limited by the availability of high-quality quasar spectra. Restricting the analysis to comparable scales and thermal history priors as in prior studies ($k_{\rm max}

Building the First Galaxies -- Chapter 2. Starbursts Dominate The Star Formation Histories of 6 < z <12 Galaxies

Fri, 16/02/2024 - 11:20
arXiv:2306.02469v3 Announce Type: replace Abstract: We use SEDz* -- a code designed to chart star formation histories (SFHs) of 6

The THESAN project: galaxy sizes during the epoch of reionization

Thu, 15/02/2024 - 12:08
arXiv:2402.08717v1 Announce Type: new Abstract: We investigate galaxy sizes at redshift $z\gtrsim 6$ with the cosmological radiation-magneto-hydrodynamic simulation suite THESAN(-HR). These simulations simultaneously capture the reionization of the large-scale intergalactic medium and resolved galaxy properties. The intrinsic size ($r^{\ast}_{1/2}$) of simulated galaxies increases moderately with stellar mass at $M_{\ast} \lesssim 10^{8}\,{\rm M}_{\odot}$ and decreases fast at larger masses, resulting in a hump feature at $M_{\ast}\sim 10^{8}\,{\rm M}_{\odot}$ that is insensitive to redshift. Low-mass galaxies are in the initial phase of size growth and are better described by a spherical shell model with feedback-driven gas outflows competing with the cold inflows. In contrast, massive galaxies fit better with the disk formation model. They generally experience a phase of rapid compaction and gas depletion, likely driven by internal disk instability rather than external processes. We identify four compact quenched galaxies in the $(95.5\,{\rm cMpc})^{3}$ volume of THESAN-1 at $z\simeq 6$, and their quenching follows reaching a characteristic stellar surface density akin to the massive compact galaxies at cosmic noon. Compared to observations, we find that the median UV effective radius ($R^{\rm UV}_{\rm eff}$) of simulated galaxies is at least three times larger than the observed ones at $M_{\ast}\lesssim 10^{9}\,{\rm M}_{\odot}$ or $M_{\rm UV}\gtrsim -20$ at $6 \lesssim z \lesssim 10$. This inconsistency, related to the hump feature of the intrinsic size--mass relation, persists across many other cosmological simulations with different galaxy formation models and numerical resolutions, demonstrating the potential of using galaxy morphology to constrain galaxy formation models at high redshifts.

Constraints on Dark Matter-Dark Energy Scattering from ACT DR6 CMB Lensing

Wed, 14/02/2024 - 10:43
The predicted present-day amplitude of matter fluctuations based on cosmic microwave background (CMB) anisotropy data has sometimes been found discrepant with more direct measurements of late-time structure. This has motivated many extensions to the standard cosmological model, including kinetic interactions between dark matter and dark energy that introduce a drag force slowing the growth of structure at late times. Exploring this scenario, we develop a model for quasi-linear scales in the matter power spectrum by calculating the critical overdensity in the presence of this interaction and a varying dark energy equation of state. We explicitly avoid modeling or interpretation of data on non-linear scales in this model (such as use of $\Lambda$CDM-calibrated priors), which would require numerical simulations. We find that the presence of the drag force hinders halo formation, thus increasing the deviation from $\Lambda$CDM in the mildly non-linear regime. We use CMB lensing observations from the sixth data release of the Atacama Cosmology Telescope up to $L=1250$ (in combination with Planck, Sloan Digital Sky Survey, and 6dFGS data) to derive the strongest constraints to date on the amplitude of the drag term, finding the dimensionless interaction strength $\Gamma_\mathrm{DMDE}/(H_0\rho_\mathrm{c})

A new census of dust and PAHs at z=0.7-2 with JWST MIRI

Wed, 14/02/2024 - 10:38
This paper utilizes the JWST MIRI multi-band imaging data from the SMILES survey (5-25micron), complemented with HST and NIRCam photometric and spectroscopic data from the JADES and FRESCO surveys for 443 star-forming (non-AGN) galaxies at z=0.7-2.0 to extend the study of dust and PAH emission to a new mass and SFR parameter space beyond our local universe. We find a strong correlation between the fraction of dust in PAHs (PAH fraction, q_PAH) with stellar mass. Moreover, the PAH fraction behavior as a function of gas-phase metallicity is similar to that at z~0 from previous studies, suggesting a universal relation: q_PAH is constant (~3.4%) above a metallicity of ~ 0.5$Z_{\odot}$ and decreases to 5\times 10^9M_{\odot}$, on average, more than half of the emitted luminosity is obscured, while there exists a non-negligible population of lower mass galaxies with >50% obscured fractions. At a fixed mass, the obscured fraction correlates with SFR surface density. This is a result of higher dust covering fractions in galaxies with more compact star forming regions. Similarly, galaxies with high IRX (IR to UV luminosity) at a given mass or UV continuum slope tend to have higher SFR surface density and shallower attenuation curves, owing to their higher effective dust optical depths and more compact star forming regions.

The ALMaQUEST Survey XIII: Understanding radial trends in star formation quenching via the relative roles of gas availability and star formation efficiency

Tue, 13/02/2024 - 10:20
Star formation quenching is one of the key processes that shape the evolution of galaxies. In this study, we investigate the changes in molecular gas and star formation properties as galaxies transit from the star-forming main sequence to the passive regime. Our analysis reveals that as galaxies move away from the main sequence towards the green valley the radial profile of specific star formation rate surface density ($\Sigma_\mathrm{sSFR}$) is suppressed compared with main sequence galaxies out to a galactocentric radius of 1.5 $R_{e}$ ($\sim$ 7 kpc for our sample). By combining radial profiles of gas fraction ($f_\mathrm{gas}$) and star formation efficiency (SFE), we can discern the underlying mechanism that determines $\Sigma_\mathrm{sSFR}$ at different galactocentric radii. Analysis of relative contributions of $f_\mathrm{gas}$ and SFE to $\Sigma_\mathrm{sSFR}$ uncovers a diverse range of quenching modes. Star formation in approximately half of our quenching galaxies is primarily driven by a single mode (i.e. either $f_\mathrm{gas}$ or SFE), or a combination of both. A collective analysis of all galaxies reveals that the reduction in star formation within the central regions ($R$ $$ 0.5 $R_{e}$), both $f_\mathrm{gas}$ and SFE contribute to the suppression of star formation. Our findings suggest that multiple quenching mechanisms may be at play in our sample galaxies, and even within a single galaxy. We also compare our observational outcomes with those from galaxy simulations and discuss the implications of our data.

The SAMI Galaxy Survey: galaxy spin is more strongly correlated with stellar population age than mass or environment

Tue, 13/02/2024 - 10:15
We use the SAMI Galaxy Survey to examine the drivers of galaxy spin, $\lambda_{R_e}$, in a multi-dimensional parameter space including stellar mass, stellar population age (or specific star formation rate) and various environmental metrics (local density, halo mass, satellite vs. central). Using a partial correlation analysis we consistently find that age or specific star formation rate is the primary parameter correlating with spin. Light-weighted age and specific star formation rate are more strongly correlated with spin than mass-weighted age. In fact, across our sample, once the relation between light-weighted age and spin is accounted for, there is no significant residual correlation between spin and mass, or spin and environment. This result is strongly suggestive that present-day environment only indirectly influences spin, via the removal of gas and star formation quenching. That is, environment affects age, then age affects spin. Older galaxies then have lower spin, either due to stars being born dynamically hotter at high redshift, or due to secular heating. Our results appear to rule out environmentally dependent dynamical heating (e.g. galaxy-galaxy interactions) being important, at least within $1R_e$ where our kinematic measurements are made. The picture is more complex when we only consider high-mass galaxies ($M_*\gtrsim 10^{11}$M$_{\odot}$). While the age-spin relation is still strong for these high-mass galaxies, there is a residual environmental trend with central galaxies preferentially having lower spin, compared to satellites of the same age and mass. We argue that this trend is likely due to central galaxies being a preferred location for mergers.

Multiple Beads-on-a-string: Dark Matter-Deficient Galaxy Formation in a Mini-bullet Satellite-satellite Galaxy Collision

Mon, 12/02/2024 - 10:45
Dark matter-deficient galaxies (DMDGs) discovered in the survey of ultra-diffuse galaxies (UDGs), in apparent conflict with standard CDM, may be produced by high-velocity galaxy-galaxy collisions, the $\textit{Mini-bullet}$ scenario. Recent observations of an aligned trail of $7-11$ UDGs near NGC1052, including DMDGs DF2 and DF4, suggesting a common formation event, $\sim8.9\pm1.5$ Gyr ago, provide a test. Hydro/N-body simulations, supplemented by galaxy orbit integrations, demonstrate that satellite-satellite collisions outside the host-galaxy virial radius can reproduce the observed UDGs in the NGC1052 group. A trail of $\sim10$ DMDGs is shown to form, including two massive ones that replicate the observed motions of DF2 and DF4. The linear relation, $v=Ax+v_{0}$, conjectured previously to relate positions ($x$) and velocities ($v$) of the aligned DMDGs as a signature of the collision event, is approximately obeyed, but individual DMDGs can deviate significantly from it. The progenitors whose collision spawned the trail of DMDGs survive the collision without, themselves, becoming DMDGs. We predict one progenitor is located at the end of the trail, testable by observing the difference between its stars, formed pre-collision, from those of the DMDGs, formed post-collision. By contrast, stellar ages and metallicities of the DMDGs are nearly identical. We further offer a hint that the tidal field of host NGC1052 may contribute to making DMDGs diffuse. $\Lambda$CDM simulation in a 100 cMpc box finds our required initial conditions $\sim10$ times at $z

Ly$\alpha$ emission in galaxies at $z\simeq5-6$: new insight from JWST into the statistical distributions of Ly$\alpha$ properties at the end of reionization

Mon, 12/02/2024 - 10:31
JWST has recently sparked a new era of Lya spectroscopy, delivering the first measurements of the Lya escape fraction and velocity profile in typical galaxies at z~6-10. These observations offer new prospects for insight into the earliest stages of reionization. But to realize this potential, we need robust intrinsic models of Lya properties in galaxies at z~5-6 when the IGM is mostly ionized. Here we use new JWST observations from the JADES and FRESCO surveys to characterize statistical distributions of Lya velocity offsets, escape fractions, and EWs in z~5-6 galaxies that will be applicable to growing datasets at z>6. We find that galaxies with large Lya escape fractions (>0.2) are common at z~5-6, comprising 30% of Lyman break selected samples. Comparing to literature studies, our census suggests that Lya becomes more prevalent in the galaxy population toward higher redshift from z~3 to z~6, although we find that this evolution slows considerably between z~5 and z~6, consistent with modest attenuation from residual HI in the mostly ionized IGM at z~5-6. We find significant evolution in Lya velocity profiles between z~2-3 and z~5-6. At lower redshifts, the strongest Lya emitters often have line profiles peaking near the systemic redshift, reflecting escape through low HI density channels. At z~5-6, the strongest Lya emitters have profiles with flux emerging at typical redshifted velocities ~230km/s. The rarity of Lya emitters with peak flux near the systemic redshift at z~5-6 may reflect the influence of resonant scattering from residual HI in the IGM. This effect will make it challenging to use Lya peak offsets as a probe of Lyman continuum leakage at z~5-6. We use our z~5-6 Lya distributions to make predictions for typical Lya properties at z>8 and discuss implications of a recently-discovered Lya emitter at z=8.5 with a small peak velocity offset (156km/s).

A catalogue of dual-field interferometric binary calibrators

Thu, 08/02/2024 - 11:33
Dual-field interferometric observations with VLTI/GRAVITY sometimes require the use of a "binary calibrator", a binary star whose individual components remain unresolved by the interferometer, with a separation between 400 and 2000 mas for observations with the Units Telescopes (UTs), or 1200 to 3000 mas for the Auxiliary Telescopes (ATs). The separation vector also needs to be predictable to within 10 mas for proper pointing of the instrument. Up until now, no list of properly vetted calibrators was available for dual-field observations with VLTI/GRAVITY on the UTs. Our objective is to compile such a list, and make it available to the community. We identify a list of candidates from the Washington Double Star (WDS) catalogue, all with appropriate separations and brightness, scattered over the Southern sky. We observe them as part of a dedicated calibration programme, and determine whether these objects are true binaries (excluding higher multiplicities resolved interferometrically but unseen by imaging), and extract measurements of the separation vectors. We combine these new measurements with those available in the WDS to determine updated orbital parameters for all our vetted calibrators. We compile a list of 13 vetted binary calibrators for observations with VLTI/GRAVITY on the UTs, and provide orbital estimates and astrometric predictions for each of them. We show that our list guarantees that there are always at least two binary calibrators at airmass

Searching for Bumps in the Cosmological Road: Do Type Ia Supernovae with Early Excesses Have Biased Hubble Residuals?

Wed, 07/02/2024 - 10:42
Flux excesses in the early time light curves of Type Ia supernovae (SNe\,Ia) are predicted by multiple theoretical models and have been observed in a number of nearby SNe\,Ia over the last decade. However, the astrophysical processes that cause these excesses may affect their use as standardizable candles for cosmological parameter measurements. In this paper, we perform a systematic search for early-time excesses in SNe\,Ia observed by the Zwicky Transient Facility (ZTF) to study whether SNe\,Ia with these excesses yield systematically different Hubble residuals. We analyze two compilations of ZTF SN\,Ia light curves from its first year of operations: 127 high-cadence light curves from \citet{Yao19} and 305 light curves from the ZTF cosmology data release of \citet{Dhawan22}. We detect significant early-time excesses for 17 SNe\,Ia in these samples and find that the excesses have an average $g-r$ color of $0.06\pm0.09$~mag; we do not find a clear preference for blue excesses as predicted by several models. Using the SALT3 model, we measure Hubble residuals for these two samples and find that excess-having SNe\,Ia may have lower Hubble residuals (HR) after correcting for shape, color, and host-galaxy mass, at $\sim$2-3$\sigma$ significance; our baseline result is $\Delta HR = -0.056 \pm 0.026$~mag ($2.2 \sigma$). We compare the host-galaxy masses of excess-having and no-excess SNe\,Ia and find they are consistent, though at marginal significance excess-having SNe\,Ia may prefer lower-mass hosts. Additional discoveries of early excess SNe\,Ia will be a powerful way to understand potential biases in SN\,Ia cosmology and probe the physics of SN\,Ia progenitors.