skip to content

Kavli Institute for Cosmology, Cambridge

 

A Cosmic Miracle: A Remarkably Luminous Galaxy at $z_{\rm{spec}}=14.44$ Confirmed with JWST

KICC papers - Mon, 19/05/2025 - 10:41
arXiv:2505.11263v1 Announce Type: new Abstract: JWST has revealed a stunning population of bright galaxies at surprisingly early epochs, $z>10$, where few such sources were expected. Here we present the most distant example of this class yet -- MoM-z14, a luminous ($M_{\rm{UV}}=-20.2$) source in the COSMOS legacy field at $z_{\rm{spec}}=14.44^{+0.02}_{-0.02}$ that expands the observational frontier to a mere 280 million years after the Big Bang. The redshift is confirmed with NIRSpec/prism spectroscopy through a sharp Lyman-$\alpha$ break and $\approx3\sigma$ detections of five rest-UV emission lines. The number density of bright $z_{\rm{spec}}\approx14-15$ sources implied by our "Mirage or Miracle" survey spanning $\approx350$ arcmin$^{2}$ is $>100\times$ larger ($182^{+329}_{-105}\times$) than pre-JWST consensus models. The high EWs of UV lines (${\approx}15{-}35$ \AA) signal a rising star-formation history, with a ${\approx}10\times$ increase in the last 5 Myr ($\rm{SFR_{\rm{5Myr}}}/\rm{SFR_{\rm{50Myr}}}=9.9^{+3.0}_{-5.8}$). The source is extremely compact (circularized $r_{\rm{e}} = 74^{+15}_{-12}$ pc), and yet resolved, suggesting an AGN is not the dominant source of light. The steep UV slope ($\beta=-2.5^{+0.2}_{-0.2}$) implies negligible dust attenuation and a young stellar population. The absence of a strong damping wing may indicate that the immediate surroundings of MoM-z14 are partially ionized at a redshift where virtually every reionization model predicts a $\approx100\%$ neutral fraction. The nitrogen emission and highly super-solar [N/C]$>1$ hint at an abundance pattern similar to local globular clusters that may have once hosted luminous supermassive stars. Since this abundance pattern is also common among the most ancient stars born in the Milky Way, we may be directly witnessing the formation of such stars in dense clusters, connecting galaxy evolution across the entire sweep of cosmic time.

JADES: Nitrogen Enhancement in High-Redshift Broad-Line Active Galactic Nuclei

KICC papers - Mon, 19/05/2025 - 10:02
arXiv:2502.12091v2 Announce Type: replace Abstract: The unexpectedly high nitrogen-to-oxygen (N/O) ratios observed in high-redshift (z) galaxies have challenged our understanding of early star formation. Notably, many of these nitrogen-rich galaxies show signatures of active galactic nuclei (AGNs), suggesting a possible connection between black hole formation and nitrogen enrichment. To explore this connection, we analyse stacked spectra of z=4-7 broad-line and narrow-line AGNs using deep NIRSpec data from the JADES survey. We identify a significant Niii] quintuplet and a high electron density ($\sim10^{4}\,\mathrm{cm^{-3}}$) only in the broad-line AGN stack, indicating nitrogen-rich ($\log(\mathrm{N/C})\simeq0.5$, $\log(\mathrm{N/O})>-0.6$) and dense gas similar to the high-z nitrogen-rich galaxies. Our findings suggest that dense nuclear star formation may trap nitrogen-rich gas in proto-globular clusters, in line with the high N/O observed in local globular clusters; associated runaway stellar collisions could produce intermediate-mass black hole seeds, as predicted by some models and simulations, whose accretion results into AGN signatures. These findings support scenarios connecting the early black hole seeding and growth to merging processes within and between proto-globular clusters in primeval galaxies.

Wed 21 May 13:40: XRISM observations of the X-ray pulsar Hercules X-1

Upcoming Talks - Sun, 18/05/2025 - 15:31
XRISM observations of the X-ray pulsar Hercules X-1

Hercules X-1 is one of the most complex X-ray binary systems. It is known to harbor a strongly magnetized, highly accreting neutron star. Thanks to the high inclination of the binary, a warped accretion disk precessing every 35 days, and the neutron star rotating every 1.27 seconds, the system exhibits a very broad range of timing and spectral phenomena. These include X-ray pulsations, eclipses, absorption dips, cyclotron lines, accretion disk winds and emission lines observed from various parts of the accretion flow. The unique properties of Her X-1 allow us to reveal the physics of accretion in X-ray binaries through means that are impossible in other systems. In September 2024, we carried out a large observational campaign on Hercules X-1 led by the new XRISM observatory. With over 200 ks of XRISM exposure time and a spectral resolution of better than 5 eV in the Fe K energy band (R>1000 – more than 10 times better than previous instruments), we are for the first time able to resolve and separate the various evolving emission and absorption components spectrally, and in time. In this talk, I will present the first results from this campaign, and the novel insights it provides into our understanding of accretion disk wind physics, and of X-ray pulsar accretion.

Add to your calendar or Include in your list

Tue 20 May 11:15: A 21-cm Cosmologist’s Journey: From Cambridge to North America and Back Again

Upcoming Talks - Sun, 18/05/2025 - 14:06
A 21-cm Cosmologist’s Journey: From Cambridge to North America and Back Again

In this talk, I’ll take you on a whistle-stop tour of my journey in 21-cm cosmology – from my PhD days in Cambridge to fellowship and research scientist positions in the USA and Canada. I’ll discuss the significance of 21-cm cosmology in understanding the Universe’s first billion years and describe key projects I’ve worked on, including the SKA , HERA, EDGES and REACH . Along the way, I’ll share some personal highlights from my time in North America.

Add to your calendar or Include in your list

Mon 19 May 14:00: Ionisation Chemistry in the Inner Disc

Upcoming Talks - Fri, 16/05/2025 - 16:34
Ionisation Chemistry in the Inner Disc

In the inner regions of protoplanetary discs, ionisation chemistry controls the fluid viscosity, and is thus key to understanding various accretion, outflow and planet formation processes. The ionisation is driven by thermal and non-thermal processes in the gas phase, as well as by dust-gas interactions that lead to grain charging and ionic and thermionic emission from grain surfaces. The latter dust–gas interactions are moreover a strong function of the grain size distribution. Previous chemical networks, including these chemical processes, did not accurately capture this dependence on the grain size distribution. In this talk, I will explain how our network – which explicitly includes a distribution of grains, at minimal extra computational cost – shows that chemical abundances (and thus resistivities) may vary by orders of magnitude for a reasonable set of dust distributions. Furthermore, I will illustrate how the charge derived on the surface of the grains is expected to severely hinder collisions between these grains in the inner disc – an important effect to be included in solving the Smoluchowski equation, governing the growth and fragmentation of grains. Finally, I will show the progress we have made towards developing 2D magnetohydrodynamic (MHD) simulations of the inner disc, including: multi-species (gas + dust distribution) hydrodynamics, radiation transport, our self-consistent chemistry, MHD resistivities and charge-dependent fragmentation and coagulation of grains.

Add to your calendar or Include in your list

How dark energy findings may inspire a new generation of physics nerds

Cosmology Papers - Fri, 16/05/2025 - 10:05

The discovery of the cosmic acceleration problem truly inspired me as a teenage physics nerd. Recent, related revelations about dark energy will hopefully capture the interest of today’s young science geeks, says Chanda Prescod-Weinstein

Tue 20 May 13:00: On Activity and Planets of Low-Mass Stars: Towards the Tenth Anniversary of CARMENES

Upcoming Talks - Thu, 15/05/2025 - 20:14
On Activity and Planets of Low-Mass Stars: Towards the Tenth Anniversary of CARMENES

It has been almost ten years since CARMENES opened its two spectroscopic eyes at the Calar-Alto observatory. Here’s an up-to-date account of the findings: more than 40 new planets in a sample of 354 M dwarfs; mass estimates of 32 transiting planets; and more than 120 papers, also covering topics such as stellar magnetic activity, binaries, and atmospheric characterization of exoplanets. So, what’s next? Stellar activity is still the main factor limiting the detection of many more planets or estimating the mass of transiting planets around low-mass stars. But for CARMENES , stellar activity is a signal, not just correlated noise. In its spectroscopic time series, it is manifested as a quasiperiodic wavelength-dependent variability, which induces activity-related radial velocity (ARV) variations of at least 2 m/s. For many stars, ARV variability is >10 m/s. Fortunately, ARV variability differs from Doppler shifts: it is usually incoherent, wavelength-dependent, and accompanied by spectral shape variations. These differences can help us distinguish between activity-related and planetary signals and model both phenomena simultaneously.

Add to your calendar or Include in your list

A weak Ly$\alpha$ halo for an extremely bright Little Red Dot. Indications of enshrouded SMBH growth

KICC papers - Thu, 15/05/2025 - 10:56
arXiv:2505.09542v1 Announce Type: new Abstract: The abundant population of "Little Red Dots" (LRDs)-compact objects with red UV to optical colors and broad Balmer lines at high redshift-is unveiling new insights into the properties of early active galactic nuclei (AGN). Perhaps the most surprising features of this population are the presence of Balmer absorption and ubiquitous strong Balmer breaks. Recent models link these features to an active supermassive black hole (SMBH) cocooned in very dense gas ($N_{\rm H}\sim10^{24}\,\rm cm^{-2}$). We present a stringent test of such models using VLT/MUSE observations of A2744-45924, the most luminous LRD known to date ($L_{\rm H\alpha}\approx10^{44}~\rm erg\,s^{-1}$), located behind the Abell-2744 lensing cluster at $z=4.464$ ($\mu=1.8$). We detect a moderately extended Ly$\alpha$ nebula ($h\approx5.7$ pkpc), spatially offset from the point-like H$\alpha$ seen by JWST. The Ly$\alpha$ emission is narrow ($\rm FWHM=270\pm 15~km\,s^{-1}$), spatially offset to H$\alpha$, and faint ($\rm Ly\alpha=0.07H\alpha$) compared to Ly$\alpha$ nebulae typically observed around quasars of similar luminosity. We detect compact N$\,$IV]$\lambda$1486 emission, spatially aligned with H$\alpha$, and a spatial shift in the far-UV continuum matching the Ly$\alpha$ offset. We discuss that H$\alpha$ and Ly$\alpha$ have distinct physical origins: H$\alpha$ originates from the AGN, while Ly$\alpha$ is powered by star formation. In the environment of A2744-45924, we identify four extended Ly$\alpha$ halos ($\Delta z<0.02$, $\Delta r<100$ pkpc). Their Ly$\alpha$ luminosities match expectations based on H$\alpha$ emission, indicating no evidence for radiation from A2744-45924 affecting its surroundings. The lack of strong, compact, and broad Ly$\alpha$ and the absence of a luminous extended halo, suggest that the UV AGN light is obscured by dense gas cloaking the SMBH with covering factor close to unity.

GA-NIFS: Mapping $z\simeq3.5$ AGN-driven ionized outflows in the COSMOS field

KICC papers - Thu, 15/05/2025 - 10:47
arXiv:2505.08867v1 Announce Type: new Abstract: Active Galactic Nuclei (AGN) are a key ingredient in galaxy evolution, possibly shaping galaxy growth through the generation of powerful outflows. Little is known regarding AGN-driven ionized outflows in moderate-luminosity AGN (logLbol[erg/s]<47) beyond cosmic noon (z>3). We present the first systematic analysis of the ionized outflow properties of a sample of X-ray-selected AGN (logLx[erg/s]>44) from the COSMOS-Legacy field at z~3.5 and with logLbol[erg/s]=45.2-46.7, by using JWST NIRSpec/IFU spectroscopic observations as part of the GA-NIFS program. We spectrally isolate and spatially resolve the ionized outflows, by performing a multi-component kinematic decomposition of the rest-frame optical emission lines. JWST/NIRSpec IFU data also revealed a wealth of close-by companions, of both non-AGN and AGN nature, and ionized gas streams likely tracing tidal structures and large-scale ionized gas nebulae, extending up to the circum-galactic medium. Ionized outflows are detected in all COS-AGN targets, which we compare with previous results from the literature up to z~3, opportunely (re-)computed for a coherent comparison. We normalize outflow energetics ($\dot{M}_{out}$, $\dot{E}_{out}$) to the outflow density to standardize the various assumptions that were made in the literature. Our choice is equal to assuming that each outflow has the same gas density. We find GA-NIFS AGN to show outflows consistent with literature results, within the large scatter shown by the collected measurements, suggesting no strong evolution with redshift in terms of total mass outflow rate, energy budget and outflow velocity for fixed bolometric luminosity. Moreover, we find no clear redshift evolution of the ratio of mass outflow rate and kinetic power over AGN bolometric luminosity beyond z>1. In general, our results indicate no significant evolution of the physics driving outflows beyond z~3. [abridged]

Tue 20 May 13:00: Cosmology with the ACT DR6 data release

Upcoming Talks - Wed, 14/05/2025 - 17:49
Cosmology with the ACT DR6 data release

In March 2025, the Atacama Cosmology Telescope (ACT) released its last cosmological analysis along with a new cosmic microwave background (CMB) dataset. The sixth data release (DR6), including data collected from 2017 to 2022, covers 40% of the sky at arcminute resolution providing the most precise maps of CMB temperature and polarization. In this talk, I will give an overview of the challenges faced during the ACT DR6 analysis and describe its constraints on fundamental assumptions of the standard cosmological model and extensions to it.

Add to your calendar or Include in your list

Thu 22 May 11:30: Baryon Acoustic Oscillations from a Different Angle KICC Special Seminar

Upcoming Talks - Wed, 14/05/2025 - 12:35
Baryon Acoustic Oscillations from a Different Angle

The Dark Energy Spectroscopic Instrument (DESI) has published BAO measurements from one year of data (DR1) in 2024 and 3 years of data (DR2) in 2025. The DESI collaboration argue that their measurements suggest that dark energy is evolving and that this evidence is stronger using the DR2 data. This result would have major implications for fundamental physics if true. I will present a new way of looking at BAO data which shows that the DR2 data are more consistent with the Planck LCDM cosmology than the DR1 data. The evidence for evolving dark energy from DESI BAO has therefore weakened as the data have improved. I will also discuss the impact of systematic errors if DESI BAO data are combined with Type Ia supernovae. In summary, I find very little evidence to suggest that dark energy is evolving.

KICC Special Seminar

Add to your calendar or Include in your list

Fri 20 Jun 11:30: Title to be confirmed

Upcoming Talks - Tue, 13/05/2025 - 23:00
Title to be confirmed

Abstract not available

Add to your calendar or Include in your list

The competing effects of recent and long-term star formation histories on oxygen, nitrogen, and stellar metallicities

KICC papers - Tue, 13/05/2025 - 10:29
arXiv:2505.07018v1 Announce Type: new Abstract: The fundamental metallicity relation (FMR) - the three-way trend between galaxy stellar masses, star-formation rates (SFRs) and gaseous metallicities - remains amongst the most studied extragalactic relations. Furthermore, metallicity correlates particularly tightly with gravitational potential. Simulations support a shared origin for these relations relating to long-term gas inflow history variations; however, differences between simulated and observed galaxy samples make it unclear whether this holds for real galaxies. We use MaNGA integral field observations to probe these relations in star-forming galaxies at one effective radius. We confirm the FMR and equivalent relations for stellar metallicity (FMR*) and gaseous N/O (fundamental nitrogen relation, FNR). We find that all relations persist when considering gravitational potential in place of stellar mass and/or considering stellar ages in place of SFR, with the gaseous relations strengthened significantly by considering potential. The gaseous FMR disappears at high masses/potentials, while the FNR persists and the FMR* strengthens. Our results suggest a unified interpretation of galaxies' gaseous and stellar metallicities and their N/O abundances in terms of their formation histories. Deeper gravitational potentials correspond to earlier star-formation histories (SFHs) and faster gas consumption, producing tight potential-abundance relations for stars and gas. In weak potentials, galaxy SFR variations primarily result from recent gas inflows, mostly affecting gas abundances. In deeper potentials, SFR variations instead correspond to broad differences in SFH shapes resulting from differences in long-term gas consumption histories, which is most visible in stellar abundances. This unified interpretation could be confirmed with upcoming higher redshift spectroscopic surveys.

When relics were made: vigorous stellar rotation and low dark matter content in the massive ultra-compact galaxy GS-9209 at z=4.66

KICC papers - Tue, 13/05/2025 - 10:10
arXiv:2505.06349v1 Announce Type: new Abstract: JWST observations uncovered a large number of massive quiescent galaxies (MQGs) at z>3, which theoretical models struggle to reproduce. Explaining the number density of such objects requires extremely high conversion efficiency of baryons into stars in early dark matter halos. Using stellar kinematics, we can investigate the processes shaping the mass assembly histories of MQGs. We present high-resolution JWST/NIRSpec integral field spectroscopy of GS-9209, a massive, compact quiescent galaxy at z=4.66 ($\log \left (M_{\ast}/M_{\odot} \right) = 10.52 \pm 0.06 $, $R_{eff} = 220 \pm 20$ pc). Full spectral fitting of the spatially resolved stellar continuum reveals a clear rotational pattern, yielding a spin parameter of $\lambda_{R_{eff}} = 0.65 \pm 0.12$. With its high degree of rotational support, this galaxy challenges the scenario of MQGs growing mainly by dry major mergers. This study suggests that at least a fraction of the earliest quiescent galaxies were fast rotators and that quenching was dynamically gentle process, preserving the stellar disc even in highly compact objects. Using Jeans anisotropic modelling (JAM) and a NFW profile, we measure a dark matter fraction of $f_{\rm DM} \left (< R_{eff} \right ) = 6.3^{+2.8}_{-1.7}%$, which is plausible given that this galaxy is extremely compact. Our findings use kinematics to independently confirm the massive nature of early quiescent galaxies, previously inferred from stellar population modelling. We suggest that GS-9209 has a similar structure to low-redshift 'relic' galaxies. However, unlike relic galaxies which have bottom-heavy initial mass functions (IMF), the dynamically inferred stellar mass-to-light ratio of GS-9209 is consistent with a Milky-Way like IMF. The kinematical properties of GS-9209 are different from those of z<1 early-type galaxies and more similar to those of recently quenched post-starburst galaxies at z>2.

Evidence for large baryonic feedback at low and intermediate redshifts from kinematic Sunyaev-Zel'dovich observations with ACT and DESI photometric galaxies

KICC papers - Tue, 13/05/2025 - 10:09
arXiv:2407.07152v2 Announce Type: replace Abstract: Recent advances in cosmological observations have provided an unprecedented opportunity to investigate the distribution of baryons relative to the underlying matter. In this work, we show that the gas is more extended than the dark matter, and the amount of baryonic feedback at $z \lesssim 1$ disfavors low-feedback models such as that of state-of-the-art hydrodynamical simulation IllustrisTNG compared with high-feedback models such as that of the original Illustris simulation. This has important implications for bridging the gap between theory and observations and understanding galaxy formation and evolution. Furthermore, a better grasp of the baryon-dark matter link is critical to future cosmological analyses, which are currently impeded by our limited knowledge of baryonic feedback. Here, we measure the kinematic Sunyaev-Zel'dovich (kSZ) effect from the Atacama Cosmology Telescope (ACT), stacked on the luminous red galaxy (LRG) sample of the Dark Energy Spectroscopic Instrument (DESI) imaging survey. This is the first analysis to use photometric redshifts for reconstructing galaxy velocities. Due to the large number of galaxies comprising the DESI imaging survey, this is the highest signal-to-noise stacked kSZ measurement to date: we detect the signal at 13$\sigma$, finding strong evidence that the gas is more spread out than the dark matter, as well as a preference for larger feedback compared to some commonly used state-of-the-art hydrodynamical simulations. Our work opens up the possibility of recalibrating large hydrodynamical simulations using the kSZ effect. In addition, our findings point towards a way of alleviating inconsistencies between weak lensing surveys and cosmic microwave background (CMB) experiments, such as the `low $S_8$' tension, and shed light on long-standing enigmas in astrophysics, such as the `missing baryon' problem.

On the spatial distribution of the Large-Scale structure: An Unsupervised search for Parity Violation

KICC papers - Tue, 13/05/2025 - 10:08
arXiv:2410.16030v3 Announce Type: replace Abstract: We use machine learning methods to search for parity violations in the Large-Scale Structure (LSS) of the Universe, motivated by recent claims of chirality detection using the 4-Point Correlation Function (4PCF), which would suggest new physics during the epoch of inflation. This work seeks to reproduce these claims using methods originating from high energy collider analyses. Our machine learning methods optimise some underlying parity odd function of the data, and use it to evaluate the parity odd fraction. We demonstrate the effectiveness and suitability of these methods and then apply them to the Baryon Oscillation Spectroscopic Survey (BOSS) catalogue. No parity violation is detected at any significance.

Scientists in a race to discover why the Universe exists

Cosmology Papers - Tue, 13/05/2025 - 10:07

Researchers in the US and Japan are racing to build new particle detectors that they hope will explain why the Universe exists.

The THESAN-ZOOM project: Star formation efficiency from giant molecular clouds to galactic scale in high-redshift starbursts

KICC papers - Mon, 12/05/2025 - 11:25
arXiv:2505.05554v1 Announce Type: new Abstract: Star formation in galaxies is inherently complex, involving the interplay of physical processes over a hierarchy of spatial scales. In this work, we investigate the connection between global (galaxy-scale) and local (cloud-scale) star formation efficiencies (SFEs) at high redshifts ($z\gtrsim 3$), using the state-of-the-art cosmological zoom-in simulation suite THESAN-ZOOM. We find that the galaxy-scale average SFE, $\langle \epsilon^{\rm gal}_{\rm ff} \rangle$, scales with $M_{\rm halo}^{1/3}\,(1+z)^{1/2} \sim V_{\rm vir}$, consistent with expectations from feedback-regulated models. On cloud scales, we identify giant molecular clouds (GMCs) in a broad sample of high-redshift starbursts spanning a wide range of halo masses and redshifts. Star formation in these systems is predominantly hosted by filamentary GMCs embedded in a dense and highly turbulent interstellar medium (ISM). GMCs exhibit remarkably universal properties, including mass function, size, turbulence, and surface density, regardless of the environment in which they are identified. The global gas depletion time (and the Kennicutt-Schmidt relation) is determined by the GMC mass fraction in the ISM, while the cloud-scale SFE shows little variation. In particular, we find a nearly constant gas surface density of $\Sigma_{\rm GMC} \approx 70\,{\rm M}_{\odot}\,{\rm pc}^{-2}$ across different host galaxies. Nevertheless, we identify two regimes where phases with high SFE can arise. First, stars may form efficiently in the shock fronts generated by feedback from a preceding starburst. Second, the increasing background dark matter surface density with redshift may contribute to the gravitational potential of clouds at $z \gtrsim 8$ and confine them in high-SFE phases over extended periods.

Tue 20 May 13:00: Cosmology with the ACT DR6 data release

Upcoming Talks - Mon, 12/05/2025 - 11:08
Cosmology with the ACT DR6 data release

In March 2025, the Atacama Cosmology Telescope (ACT) released its last cosmological analysis along with a new cosmic microwave background (CMB) dataset. The sixth data release (DR6), including data collected from 2017 to 2022, covers 40% of the sky at arcminute resolution providing the most precise maps of CMB temperature and polarization. In this talk, I will give an overview of the challenges faced during the ACT DR6 analysis and describe its constraints on fundamental assumptions of the standard cosmological model and extensions to it.

Add to your calendar or Include in your list

Thu 15 May 16:00: The different merger and evolutionary histories of the Milky Way and Andromeda (M31)

Upcoming Talks - Mon, 12/05/2025 - 10:26
The different merger and evolutionary histories of the Milky Way and Andromeda (M31)

The Milky Way experienced a major satellite merger 10 Gyr ago which altered, but did not destroy, the early high-alpha disk and created both an accreted and an in situ inner halo. The low-alpha disk that formed subsequently became bar-unstable 8 Gyr ago, creating the b/p bulge that also contains the inner high-alpha disk stars. M31 experienced a similar major satellite merger 3 Gyr ago which greatly heated and mixed the pre-existing high-metallicity disk, and also caused a massive inflow of gas and the formation of a dynamically hot secondary inner disk. Such a merger is consistent with the wide-spread star formation event 2-4 Gyr ago seen in disk colour-magnitude diagrams, and with the major substructures and metal-rich stars in the inner halo of M31 , when comparing photometric and recent spectroscopic data with available models. The merged satellite must have had a broad metallicity distribution and would have been the third most massive galaxy in the Local Group before the merger.

Add to your calendar or Include in your list